Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion

被引:8
|
作者
Zheng Zhiqiang [1 ]
He Feng [2 ,3 ]
Xue Yurui [1 ,2 ]
Li Yuliang [1 ,2 ,3 ]
机构
[1] Shandong Univ, Inst Frontier & Interdisciplinary Sci, Sch Chem & Chem Engn, Sci Ctr Mat Creat & Energy Convers, Jinan 250100, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Graphdiyne; Atomic catalyst; Atomic catalysis; CO2; fixation; conversion; METAL-ORGANIC FRAMEWORK; GRAPHDIYNE; CATALYSTS; DESIGN; SITES;
D O I
10.1007/s40242-021-1387-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon dioxide(CO2) is an important and valuable C1 resource for the synthesis of numerous of value-added products. However, efficient fixation and conversion of CO2 into organic carbonates under mild conditions remain great challenges. Herein, graphdiyne(GDY)-based nickel atomic catalysts(Ni-0/GDYs) were synthesized through a facile in-situ reduction method. Experimental results showed that the obtained Ni-0/GDY had outstanding catalytic performances for converting CO2 into cyclic carbonates with a high reaction conversion(99%) and reaction selectivity(ca. 100%) at 80 degrees C and under 1 atm(1 atm=101325 Pa). Specially, the activation energy (E-a) value for the Ni-0/GDY is 37.05 kJ/mol, lower than those of reported catalysts. The reaction mechanism was next carefully analyzed by using density functional theory(DFT) calculations. Such an excellent catalytic property could be mainly attributed to the high dispersion of active sites on the Ni-0/GDY, and the unique incomplete charge transfer properties of GDY-based zero-valent metallic catalysts.
引用
收藏
页码:92 / 98
页数:7
相关论文
共 50 条
  • [41] Combining CO2 conversion and N2 fixation in a gliding arc plasmatron
    Ramakers, Marleen
    Heijkers, Stijn
    Tytgat, Tom
    Lenaerts, Silvia
    Bogaerts, Annemie
    JOURNAL OF CO2 UTILIZATION, 2019, 33 : 121 - 130
  • [42] ELECTROANALYTICAL INVESTIGATION ON THE NICKEL-PROMOTED ELECTROCHEMICAL CONVERSION OF CO2 TO CO.
    Daniele, Salvatore
    Ugo, Paolo
    Bontempelli, Gino
    Fiorani, Mario
    1600, (219): : 1 - 2
  • [43] Efficient Electrochemical Flow System with Improved Anode for the Conversion of CO2 to CO
    Ma, Sichao
    Luo, Raymond
    Moniri, Saman
    Lan, Yangchun
    Kenis, Paul J. A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (10) : F1124 - F1131
  • [44] Efficient Fluoride-Catalyzed Conversion of CO2 to CO at Room Temperature
    Lescot, Camille
    Nielsen, Dennis U.
    Makarov, Ilya S.
    Lindhardt, Anders T.
    Daasbjerg, Kim
    Skrydstrup, Troels
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (16) : 6142 - 6147
  • [45] Highly efficient and selective photocatalytic CO2 to CO conversion in aqueous solution
    Chai, Xiaomin
    Huang, Hai-Hua
    Liu, Huiping
    Ke, Zhuofeng
    Yong, Wen-Wen
    Zhang, Ming-Tian
    Cheng, Yuan-Sheng
    Wei, Xian-Wen
    Zhang, Liyan
    Yuan, Guozan
    CHEMICAL COMMUNICATIONS, 2020, 56 (27) : 3851 - 3854
  • [46] CO2 coordination to nickel atoms: Matrix isolation and density functional studies
    Galan, F
    Fouassier, M
    Tranquille, M
    Mascetti, J
    Papai, I
    JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (14): : 2626 - 2633
  • [47] Ultrathin In-Plane Heterostructures for Efficient CO2 Chemical Fixation
    Jin, Sen
    Shao, Wei
    Chen, Shichuan
    Li, Lei
    Shang, Shu
    Zhao, Yan
    Zhang, Xiaodong
    Xie, Yi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (03)
  • [48] Xylan/DBU as an efficient and green catalyst for chemical fixation of CO2
    Zhou, Qiu-sheng
    Peng, Xin-wen
    Zhong, Lin-Xin
    Li, Xue-hui
    Chua, Wei-tian
    Sun, Run-cang
    FUEL PROCESSING TECHNOLOGY, 2018, 176 : 146 - 152
  • [49] Mesoporous zirconium phosphonates as efficient catalysts for chemical CO2 fixation
    Lin, Xiu-Zhen
    Yang, Zhen-Zhen
    He, Liang-Nian
    Yuan, Zhong-Yong
    GREEN CHEMISTRY, 2015, 17 (02) : 795 - 798
  • [50] COCCOLITHES AND FIXATION OF CO2
    BERLAND, B
    GUDIN, C
    BIOFUTUR, 1991, (106) : 78 - 78