Magnesium Borate Fiber Coating Separators with High Lithium-Ion Transference Number for Lithium-Ion Batteries

被引:16
|
作者
Wang, Xin [1 ]
Peng, Longqing [1 ]
Hua, Haiming [1 ]
Liu, Yizheng [2 ]
Zhang, Peng [2 ]
Zhao, Jinbao [1 ,2 ]
机构
[1] Xiamen Univ, Collaborat Innovat Ctr Chem Energy Mat, Coll Chem & Chem Engn,State Key Lab Phys Chem Sol, Engn Res Ctr Electrochem Technol,Minist Educ,Stat, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Energy, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion battery; Mg2B2O5; fibers; Lithium ion transference number; SOLID POLYMER ELECTROLYTES; ATOMIC LAYER DEPOSITION; ELECTROCHEMICAL PROPERTIES; POLYETHYLENE SEPARATORS; CONDUCTIVITY; GROWTH; ESTER; BORON;
D O I
10.1002/celc.201901916
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, magnesium borate fiber (MBO) is used as a functional ceramic to coat onto a polypropylene (PP) separator (MBO@PP). This MBO coating layer increases the lithium-ion transference number (t(Li+)) from 0.24 to 0.57 in the LiPF6-based electrolyte due to the MBO acting as Lewis acid sites interacts with Lewis base PF6- . The increase in the t(Li+) reduces the concentration polarization and promotes the migration of lithium ions. Besides, the prepared MBO@PP separator has better wettability with liquid electrolyte, the electrolyte uptake as well as thermal stability. The LiFePO4 half-coin with MBO@PP separator not only had better cycle stability, but also had a higher capacity retention rate at high current.
引用
收藏
页码:1187 / 1192
页数:6
相关论文
共 50 条
  • [41] Magnesium Sulphide as Anode Material for Lithium-Ion Batteries
    Helen, M.
    Fichtner, Maximilian
    ELECTROCHIMICA ACTA, 2015, 169 : 180 - 185
  • [42] Lithium difluoro(sulfato)borate as a salt for the electrolyte of advanced lithium-ion batteries
    Li, Shiyou
    Zhao, Wei
    Zhao, Yangyu
    Li, Xiaopeng
    Cui, Xiaoling
    RSC ADVANCES, 2013, 3 (35): : 14942 - 14945
  • [43] Carbon coating of electrode materials for lithium-ion batteries
    Yaroslavtsev, Andrey B.
    Stenina, Irina A.
    SURFACE INNOVATIONS, 2021, 9 (2-3) : 92 - 110
  • [44] Safer lithium-ion batteries
    Canter, Neil
    TRIBOLOGY & LUBRICATION TECHNOLOGY, 2014, 70 (05) : 10 - 11
  • [45] Aging of lithium-ion batteries
    Sarre, G
    Blanchard, P
    Broussely, M
    JOURNAL OF POWER SOURCES, 2004, 127 (1-2) : 65 - 71
  • [46] SAFER LITHIUM-ION BATTERIES
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2013, 91 (06) : 33 - 37
  • [47] Transparent lithium-ion batteries
    Yang, Yuan
    Jeong, Sangmoo
    Hu, Liangbing
    Wu, Hui
    Lee, Seok Woo
    Cui, Yi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (32) : 13013 - 13018
  • [48] LITHIUM-ION BATTERIES The Basics
    Spotnitz, Robert
    CHEMICAL ENGINEERING PROGRESS, 2013, 109 (10) : 39 - 43
  • [49] The impedance of lithium-ion batteries
    T. L. Kulova
    V. A. Tarnopol’skii
    A. M. Skundin
    Russian Journal of Electrochemistry, 2009, 45 : 38 - 44
  • [50] Aqueous lithium-ion batteries
    von Wald Cresce, Arthur
    Xu, Kang
    CARBON ENERGY, 2021, 3 (05) : 721 - 751