Exploring Chaos with Sparse Kernel Machines

被引:1
|
作者
Bucur, Laurentiu [1 ]
Florea, Adina [1 ]
机构
[1] Univ Politehn Bucuresti, Dept Comp Sci, AI MAS Lab, Bucharest 060042, Romania
关键词
D O I
10.1109/SYNASC.2010.18
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Chaotic behaviour has been shown to exist in financial data. This paper advances the use of the sparse kernel machine model for the prediction of directional change for this class of dynamical systems. The notions of low entropy trajectory sets and low entropy trajectory balls in phase space are defined as the building patterns for the predictor. The statistical stability and robustness of the sparse kernel machine is measured out-of-sample in three experiments. Results indicate the existence of a spatio-temporal dynamic of the trajectory in the state space of a currency time series, confirming results in the literature. Applied to the momentum indicator, our results show the ability of the sparse kernel machine to produce a statistically significant effect size for the directional prediction of the price series, compared to Multiple Backpropagation Neural Networks. Tests run on the phase space of the market volatility show a high degree of predictability, considerably larger effect size and increased performance of the local model approach with sparse kernel machines compared to MBP neural networks.
引用
收藏
页码:239 / 242
页数:4
相关论文
共 50 条
  • [21] Clouds as chaos machines
    Barletta, Vincent
    ROMANCE QUARTERLY, 2021, 68 (03) : 130 - 143
  • [22] Chaos in quantum machines
    Kim, I
    Mahler, G
    FRONTIERS OF NANO-OPTOELECTRONIC SYSTEMS, 2000, 6 : 443 - 454
  • [23] Sparse kernel regressors
    Roth, V
    ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 339 - 346
  • [24] On the generalization of kernel machines
    Navarrete, P
    Ruiz del Solar, J
    PATTERN RECOGNITION WITH SUPPORT VECTOR MACHINES, PROCEEDINGS, 2002, 2388 : 24 - 39
  • [25] Evolutionary kernel machines
    Oliver Kramer
    Christian Igel
    Günter Rudolph
    Evolutionary Intelligence, 2012, 5 (3) : 151 - 152
  • [26] Evolutionary kernel machines
    Kramer, Oliver
    Igel, Christian
    Rudolph, Gunter
    EVOLUTIONARY INTELLIGENCE, 2012, 5 (03) : 151 - +
  • [27] Generalised kernel machines
    Cawley, Gavin C.
    Janacek, Gareth J.
    Talbot, Nicola L. C.
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 1720 - 1725
  • [28] Kernel Factorisation Machines
    Buet-Golfouse, Francois
    Utyagulov, Islam
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1755 - 1760
  • [29] Kernel Conjugate Gradient for Fast Kernel Machines
    Ratliff, Nathan D.
    Bagnell, J. Andrew
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 1017 - 1022
  • [30] Multiple kernel sparse representation based Gaussian kernel and Power kernel
    Zhu, Yanyong
    Dong, Jiwen
    Li, Hengjian
    2015 8TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2015, : 51 - 54