Efficiency at Maximum Power of Low-Dissipation Carnot Engines

被引:453
|
作者
Esposito, Massimiliano [1 ]
Kawai, Ryoichi [2 ]
Lindenberg, Katja [3 ,4 ]
Van den Broeck, Christian [5 ]
机构
[1] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
[2] Univ Alabama, Dept Phys, Birmingham, AL 35294 USA
[3] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA
[5] Hasselt Univ, B-3590 Diepenbeek, Belgium
关键词
HEAT ENGINES; THERMODYNAMICS; CYCLE;
D O I
10.1103/PhysRevLett.105.150603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the efficiency at maximum power, eta*, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For engines reaching Carnot efficiency eta(C) = 1 - T(c)/T(h) in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that eta* is bounded from above by eta(C)/(2 - eta(C)) and from below by eta(C)/2. These bounds are reached when the ratio of the dissipation during the cold and hot isothermal phases tend, respectively, to zero or infinity. For symmetric dissipation (ratio one) the Curzon-Ahlborn efficiency eta(CA) = 1 - root T(c)/T(h) is recovered.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] EFFICIENCY OF A CARNOT ENGINE AT MAXIMUM POWER OUTPUT
    CURZON, FL
    AHLBORN, B
    AMERICAN JOURNAL OF PHYSICS, 1975, 43 (01) : 22 - 24
  • [32] Minimal Model for Carnot Efficiency at Maximum Power
    Liang, Shiling
    Ma, Yu-Han
    Busiello, Daniel Maria
    De Los Rios, Paolo
    PHYSICAL REVIEW LETTERS, 2025, 134 (02)
  • [33] Local-stability analysis of a low-dissipation heat engine working at maximum power output
    Reyes-Ramirez, I.
    Gonzalez-Ayala, J.
    Calvo Hernandez, A.
    Santillan, M.
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [34] Bounds of efficiency at maximum power for linear, superlinear and sublinear irreversible Carnot-like heat engines
    Wang, Yang
    Tu, Z. C.
    EPL, 2012, 98 (04)
  • [35] Energetic Self-Optimization Induced by Stability in Low-Dissipation Heat Engines
    Gonzalez-Ayala, J.
    Guo, J.
    Medina, A.
    Roco, J. M. M.
    Calvo Hernandez, A.
    PHYSICAL REVIEW LETTERS, 2020, 124 (05)
  • [36] Efficiency at Maximum Power of a Carnot Quantum Information Engine
    Fadler, Paul
    Friedenberger, Alexander
    Lutz, Eric
    PHYSICAL REVIEW LETTERS, 2023, 130 (24)
  • [37] The History and Perspectives of Efficiency at Maximum Power of the Carnot Engine
    Feidt, Michel
    ENTROPY, 2017, 19 (07):
  • [38] THE MAXIMUM POWER OUTPUT AND MAXIMUM EFFICIENCY OF AN IRREVERSIBLE CARNOT HEAT ENGINE
    CHEN, JC
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1994, 27 (06) : 1144 - 1149
  • [39] Low-dissipation Class A amplifier
    Macaulay, J
    ELECTRONICS WORLD, 2001, 107 (1782): : 467 - 467
  • [40] Maximum efficiency of ideal heat engines based on a small system: Correction to the Carnot efficiency at the nanoscale
    Quan, H. T.
    PHYSICAL REVIEW E, 2014, 89 (06):