HDAC3 Regulates the Transition to the Homeostatic Myelinating Schwann Cell State

被引:32
|
作者
Rosenberg, Laura H. [1 ,3 ]
Cattin, Anne-Laure [1 ]
Fontana, Xavier [1 ]
Harford-Wright, Elizabeth [1 ]
Burden, Jemima J. [1 ]
White, Ian J. [1 ]
Smith, Jacob G. [1 ]
Napoli, Ilaria [1 ]
Quereda, Victor [1 ,5 ]
Policarpi, Cristina [1 ]
Freeman, Jamie [1 ,4 ]
Ketteler, Robin [1 ]
Riccio, Antonella [1 ]
Lloyd, Alison C. [1 ,2 ]
机构
[1] UCL, MRC Lab Mol Cell Biol, Gower St, London WC1E 6BT, England
[2] UCL, UCL Canc Inst, Gower St, London WC1E 6BT, England
[3] CRUK Therapeut Discovery Labs, Babraham Res Campus, Cambridge CB22 3AT, England
[4] Horizon Discovery, 8100 Cambridge Res Pk, Cambridge CB25 9TL, England
[5] Scripps Res Inst, 130 Scripps Way, Jupiter, FL 33458 USA
来源
CELL REPORTS | 2018年 / 25卷 / 10期
关键词
SIGNALING PATHWAY; MAINTENANCE; MECHANISMS; EXPRESSION; DISEASE; MICE; DIFFERENTIATION; IDENTIFICATION; GROWTH; NURD;
D O I
10.1016/j.celrep.2018.11.045
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The formation of myelinating Schwann cells (mSCs) involves the remarkable biogenic process, which rapidly generates the myelin sheath. Once formed, the mSC transitions to a stable homeostatic state, with loss of this stability associated with neuropathies. The histone deacetylases histone deacetylase 1 (HDAC1) and HDAC2 are required for the myelination transcriptional program. Here, we show a distinct role for HDAC3, in that, while dispensable for the formation of mSCs, it is essential for the stability of the myelin sheath once formed-with loss resulting in progressive severe neuropathy in adulthood. This is associated with the prior failure to downregulate the biogenic program upon entering the homeostatic state leading to hypertrophy and hypermyelination of the mSCs, progressing to the development of severe myelination defects. Our results highlight distinct roles of HDAC1/2 and HDAC3 in controlling the differentiation and homeostatic states of a cell with broad implications for the understanding of this important cell-state transition.
引用
收藏
页码:2755 / +
页数:16
相关论文
共 50 条
  • [31] Arresting the bad seed: HDAC3 regulates proliferation of different microglia after ischemic stroke
    Zhang, Yue
    Li, Jiaying
    Zhao, Yongfang
    Huang, Yichen
    Shi, Ziyu
    Wang, Hailian
    Cao, Hui
    Wang, Chenran
    Wang, Yana
    Chen, Di
    Chen, Shuning
    Meng, Shan
    Wang, Yangfan
    Zhu, Yueyan
    Jiang, Yan
    Gong, Ye
    Gao, Yanqin
    SCIENCE ADVANCES, 2024, 10 (10)
  • [32] HDAC3 Maintains Peripheral T Cell Homeostasis by Refraining From AICD
    Wang Shan
    Tian Feng
    Qian Ye
    Liu Ying
    Li Hui-Ting
    Zhang Ai-Hong
    Hou Zhi-Hong
    Liu Ya-Nan
    Li Juan
    Zhang Yan-Shu
    Zhao Yong
    Zheng Quan-Hui
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2018, 45 (01) : 79 - 90
  • [33] NADPH levels affect cellular epigenetic state by inhibiting HDAC3–Ncor complex
    Wei Li
    Junjie Kou
    Junying Qin
    Li Li
    Zhenxi Zhang
    Ying Pan
    Yi Xue
    Wenjing Du
    Nature Metabolism, 2021, 3 : 75 - 89
  • [34] ATXN3 Positively Regulates Type I IFN Antiviral Response by Deubiquitinating and Stabilizing HDAC3
    Feng, Qian
    Miao, Ying
    Ge, Jun
    Yuan, Yukang
    Zuo, Yibo
    Qian, Liping
    Liu, Jin
    Cheng, Qiao
    Guo, Tingting
    Zhang, Liting
    Yu, Zhengyuan
    Zheng, Hui
    JOURNAL OF IMMUNOLOGY, 2018, 201 (02): : 675 - 687
  • [35] HDAC3 Activity within the Nucleus Accumbens Regulates Cocaine-Induced Plasticity and Behavior in a Cell-Type-Specific Manner
    Campbell, R. R.
    Kramar, E. A.
    Pham, L.
    Beardwood, J. H.
    Augustynski, A. S.
    Lopez, A. J.
    Chitnis, O. S.
    Delima, G.
    Banihani, J.
    Matheos, D. P.
    Wood, M. A.
    JOURNAL OF NEUROSCIENCE, 2021, 41 (13): : 2814 - 2827
  • [36] USP38 regulates the stemness and chemoresistance of human colorectal cancer via regulation of HDAC3
    Wei Zhan
    Xin Liao
    Jing Liu
    Tian Tian
    Lei Yu
    Rui Li
    Oncogenesis, 9
  • [37] USP38 regulates the stemness and chemoresistance of human colorectal cancer via regulation of HDAC3
    Zhan, Wei
    Liao, Xin
    Liu, Jing
    Tian, Tian
    Yu, Lei
    Li, Rui
    ONCOGENESIS, 2020, 9 (05)
  • [38] Emerin regulates chromatin architecture and gene expression during myogenic differentiation in cooperation with Histone Deacetylase 3 (HDAC3).
    Demmerle, J.
    Koch, A.
    Lee, J.
    Holaska, J.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [39] TARGETING HDAC3 LIMITS FOAM CELL FORMATION AND IMPROVES ATHEROSCLEROTIC PLAQUE STABILITY
    Van den Bossche, J.
    Hoeksema, M. A.
    Gijbels, M. J. J.
    van der Velden, S.
    Sijm, A.
    Neele, A. E.
    Seijkens, T.
    Meiler, S.
    Boshuizen, M. C. S.
    Boon, L.
    Mullican, S. E.
    Spann, N. J.
    Dallinga-Thie, G. M.
    Cleutjens, J. P.
    Lazar, M. A.
    de Vries, C. J.
    Biessen, E. A. L.
    Daemen, M. J. A. P.
    Lutgens, E.
    de Winther, M. P. J.
    ATHEROSCLEROSIS, 2014, 235 (02) : E16 - E17
  • [40] NKAP Must Associate with HDAC3 to Regulate Hematopoietic Stem Cell Maintenance and Survival
    Shapiro, Michael Jeremy
    Lehrke, Michael Jonathan
    Chung, Ji Young
    Arocha, Sinibaldo Romero
    Shapiro, Virginia Smith
    JOURNAL OF IMMUNOLOGY, 2019, 202 (08): : 2287 - 2295