Design of Cu2O-Au composite microstructures for surface-enhanced Raman scattering study

被引:35
|
作者
Chen, Lei [1 ]
Zhao, Yue [1 ]
Zhang, Yongjun [1 ]
Liu, Maomao [1 ]
Wang, Yaxin [1 ]
Qu, Xin [2 ,3 ]
Liu, Yang [1 ]
Li, Ji [1 ]
Liu, Xiaoyan [1 ]
Yang, Jinghai [1 ,2 ]
机构
[1] Jilin Normal Univ, Key Lab Funct Mat Phys & Chem, Minist Educ, Siping 136000, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
关键词
Cu2O-Au composite microstructures; Surface-enhanced raman scattering; Localized surface plasmon resonance; Charge transfer; CHARGE-TRANSFER CONTRIBUTION; PHOTOCATALYTIC ACTIVITY; SELECTIVE GROWTH; SOLAR-CELLS; SPECTROSCOPY; OXIDE; SERS; NANOPARTICLES; SILVER; MICROCRYSTALS;
D O I
10.1016/j.colsurfa.2016.07.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Octahedral Cu2O-Au composite microstructures (CMSs) were synthesized with a facile in situ method and were attempted as surface-enhanced Raman scattering (SERS) substrates. The density of the Au nanoparticles (NPs) on the surface of the octahedral Cu2O microcrystals,can be controlled by tuning the concentration of the gold precursor, which can further influence the SERS activity of the Cu2O-Au CMSs system. The CMSs system exhibited a charge transfer from Au to Cu2O. Furthermore, metallic NPs deposited on the semiconductor material formed a local electromagnetic field, which altered the interfacial charge distribution. The SERS signal enhancement from the Cu2O-Au CMSs system is attributed to a combination of electromagnetic and chemical enhancement mechanisms occurring simultaneously at the semiconductor-metal interface. Overall, the proposed CMSs system will provide a new model for SERS study and application. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 102
页数:7
相关论文
共 50 条
  • [41] Adsorption characteristics of arylisocyanide on Au and Pt electrode surfaces: Surface-enhanced Raman scattering study
    Kim, NH
    Kim, K
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (04): : 1837 - 1842
  • [42] Surface-enhanced Raman scattering and biophysics
    Kneipp, K
    Kneipp, H
    Itzkan, I
    Dasari, RR
    Feld, MS
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (18) : R597 - R624
  • [43] Surface-enhanced Raman scattering of flavonoids
    Jurasekova, Z.
    Garcia-Ramos, J. V.
    Domingo, C.
    Sanchez-Cortes, S.
    JOURNAL OF RAMAN SPECTROSCOPY, 2006, 37 (11) : 1239 - 1241
  • [44] Surface-Enhanced Raman Scattering of Microorganisms
    Premasiri, W. R.
    Moir, D. T.
    Klempner, M. S.
    Ziegler, L. D.
    NEW APPROACHES IN BIOMEDICAL SPECTROSCOPY, 2007, 963 : 164 - 185
  • [45] Surface-enhanced Raman scattering holography
    Liebel, Matz
    Pazos-Perez, Nicolas
    van Hulst, Niek F.
    Alvarez-Puebla, Ramon A.
    NATURE NANOTECHNOLOGY, 2020, 15 (12) : 1005 - U33
  • [46] Surface-Enhanced Raman Scattering of Proteins
    Kahraman, Mehmet
    Sur, Ilknur
    Culha, Mustafa
    XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 : 1055 - 1056
  • [47] Surface-enhanced Raman scattering of hydroxyproline
    Guerrero, Ariel R.
    Aroca, Ricardo F.
    JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (04) : 478 - 481
  • [48] Surface-Enhanced Raman Scattering of Microorganisms
    Culha, Mustafa
    XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 : 86 - 87
  • [49] Surface-enhanced raman scattering of λ-DNA
    Wei, H.
    Xu, H.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 89 (02): : 273 - 275
  • [50] Synthesis, novel luminescence properties, and surface-enhanced Raman scattering of Au/Y2O3: Eu3+ composite nanotubes
    Su, Jiamin
    Wang, Guofeng
    Li, Ying
    Li, Rong
    Xu, Bingyu
    Wang, Yuping
    Zhang, Jisen
    DALTON TRANSACTIONS, 2014, 43 (39) : 14720 - 14725