Interval/Smoothing Filters for Multiple Object Tracking Via Analytic Combinatorics

被引:0
|
作者
Streit, R. [1 ]
机构
[1] Metron Inc, Reston, VA 20190 USA
关键词
Analytic combinatorics; Multiobject tracking; Smoothing filter; Branching process; Immigration process; Saddle point method;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The single-object Bayesian filter for an interval, or batch, of data is extended to the multiple object case using the method of analytic combinatorics. The exact expression for the probability generating functional of the Bayes posterior process is derived. It is a nested composition of functions and functionals that is evaluated via a backward recursion. Branching and immigration processes are used to model the initial multiple object process and new object arrival processes, respectively. The exact Bayes posterior distribution and various summary statistics of the interval filter are derivatives of the generating functional. These derivatives are written in equivalent Cauchy integral form and approximated using the saddle point method.
引用
收藏
页码:622 / 629
页数:8
相关论文
共 50 条
  • [21] Thermal infrared object tracking via unsupervised deep correlation filters
    Huang, Yueping
    He, Yujie
    Lu, Ruitao
    Li, Xiaofeng
    Yang, Xiaogang
    DIGITAL SIGNAL PROCESSING, 2022, 123
  • [22] Real-Time Object Tracking via Adaptive Correlation Filters
    Du, Chenjie
    Lan, Mengyang
    Gao, Mingyu
    Dong, Zhekang
    Yu, Haibin
    He, Zhiwei
    SENSORS, 2020, 20 (15) : 1 - 25
  • [23] Development of Multiple Object Tracking via Multifocal Attention
    Blankenship, Tashauna L.
    Strong, Roger W.
    Kibbe, Melissa M.
    DEVELOPMENTAL PSYCHOLOGY, 2020, 56 (09) : 1684 - 1695
  • [24] Analytic Combinatorics and Labeling in High Level Fusion and Multihypothesis Tracking
    Streit, Roy
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 965 - 972
  • [25] Robust Visual Tracking via Multiple Experts With Correlation Filters
    Zhang, Lei
    Zhang, Hong
    Li, Yawei
    Kang, Qiaochu
    Xiong, Naixue
    IEEE ACCESS, 2019, 7 : 129504 - 129513
  • [26] Multiple Feature Fused for Visual Tracking via Correlation Filters
    Yuan, Di
    Lu, Xiaohuan
    Li, Donghao
    He, Zhenyu
    Luo, Nan
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 88 - 93
  • [27] Multiple and extended object tracking with Poisson spatial processes and variable rate filters
    Godsill, S
    Li, J
    Ng, W
    IEEE CAMSAP 2005: FIRST INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2005, : 93 - 96
  • [28] Part-Based Object Tracking Using Multiple Adaptive Correlation Filters
    Barcellos, Pablo
    Scharcanski, Jacob
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70 (70)
  • [29] Fully invariant multiple object recognition and tracking using MACH and Kalman filters
    Bone, Peter
    Young, Rupert
    Chatwin, Chris
    OPTICAL PATTERN RECOGNITION XVIII, 2007, 6574
  • [30] Performance Study of Object Tracking with Multiple Kalman Filters in Autonomous Driving Systems
    Medaglini, Alessio
    Bartolini, Sandro
    Ada User Journal, 2023, 44 (04): : 284 - 287