Interval/Smoothing Filters for Multiple Object Tracking Via Analytic Combinatorics

被引:0
|
作者
Streit, R. [1 ]
机构
[1] Metron Inc, Reston, VA 20190 USA
关键词
Analytic combinatorics; Multiobject tracking; Smoothing filter; Branching process; Immigration process; Saddle point method;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The single-object Bayesian filter for an interval, or batch, of data is extended to the multiple object case using the method of analytic combinatorics. The exact expression for the probability generating functional of the Bayes posterior process is derived. It is a nested composition of functions and functionals that is evaluated via a backward recursion. Branching and immigration processes are used to model the initial multiple object process and new object arrival processes, respectively. The exact Bayes posterior distribution and various summary statistics of the interval filter are derivatives of the generating functional. These derivatives are written in equivalent Cauchy integral form and approximated using the saddle point method.
引用
收藏
页码:622 / 629
页数:8
相关论文
共 50 条
  • [1] Analytic Combinatorics in Multiple Object Tracking
    Streit, Roy
    2017 SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2017,
  • [2] A multiple feature fused model for visual object tracking via correlation filters
    Yuan, Di
    Zhang, Xinming
    Liu, Jiaqi
    Li, Donghao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (19) : 27271 - 27290
  • [3] A multiple feature fused model for visual object tracking via correlation filters
    Di Yuan
    Xinming Zhang
    Jiaqi Liu
    Donghao Li
    Multimedia Tools and Applications, 2019, 78 : 27271 - 27290
  • [4] Multiple object tracking using particle filters
    Jaward, M.
    Mihaylova, L.
    Canagarajah, N.
    Bull, D.
    2006 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2006, : 2151 - +
  • [5] Review of Kalman Filters in Multiple Object Tracking Algorithms
    Fernandez, Ian Christian B.
    Magpantay, Percival C.
    Rosales, Marc D.
    Hizon, John Richard E.
    2024 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS, COINS 2024, 2024, : 53 - 56
  • [6] Visual object tracking via collaborative correlation filters
    Xiaohuan Lu
    Jing Li
    Zhenyu He
    Wei Liu
    Lei You
    Signal, Image and Video Processing, 2020, 14 : 177 - 185
  • [7] Visual object tracking via collaborative correlation filters
    Lu, Xiaohuan
    Li, Jing
    He, Zhenyu
    Liu, Wei
    You, Lei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (01) : 177 - 185
  • [8] Space Object Tracking and Maneuver Detection via Interacting Multiple Model Cubature Kalman Filters
    Jia, Bin
    Blasch, Erik
    Pham, Khanh D.
    Shen, Dan
    Wang, Zhonghai
    Tian, Xin
    Chen, Genshe
    2015 IEEE AEROSPACE CONFERENCE, 2015,
  • [9] MULTIPLE HYPOTHESIS TRACKING AND JOINT PROBABILISTIC DATA ASSOCIATION FILTERS FOR MULTIPLE SPACE OBJECT TRACKING
    Mishra, Utkarsh R.
    Adurthi, Nagavenkat
    Majji, Manoranjan
    Singla, Puneet
    ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 2403 - 2412
  • [10] Relative Multiple Space Object Tracking Using Intensity Filters
    LeGrand, Keith A.
    DeMars, Kyle J.
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1253 - 1261