On the approximability of maximum and minimum edge clique partition problems

被引:13
|
作者
Dessmark, Anders
Lingas, Andrzej
Lundell, Eva-Marta
Persson, Mia
Jansson, Jesper
机构
[1] Lund Univ, Dept Comp Sci, SE-22100 Lund, Sweden
[2] Kyushu Univ, Dept Comp Sci & Commun Engn, Theoret Comp Sci Grp, Yamashita Lab,Nishi Ku, Fukuoka 8190395, Japan
关键词
approximation algorithm; clustering; clique partition; inapproximability; DNA clone classification;
D O I
10.1142/S0129054107004656
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the following clustering problems: given an undirected graph, partition its vertices into disjoint clusters such that each cluster forms a clique and the number of edges within the clusters is maximized (Max-ECP), or the number of edges between clusters is minimized (Min-ECP). These problems arise naturally in the DNA clone classification. We investigate the hardness of finding such partitions and provide approximation algorithms. Further, we show that greedy strategies yield constant factor approximations for graph classes for which maximum cliques can be found efficiently.
引用
收藏
页码:217 / 226
页数:10
相关论文
共 50 条
  • [21] Quantum optimization and maximum clique problems
    Yatsenko, VA
    Pardalos, PM
    Chiarini, BH
    QUANTUM INFORMATION AND COMPUTATION II, 2004, 5436 : 373 - 375
  • [22] Minimum clique partition problem with constrained weight for interval graphs
    Li, Jianbo
    Chen, Mingxia
    Li, Jianping
    Li, Weidong
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2006, 4112 : 459 - 468
  • [23] A note on the complexity of the maximum edge clique partitioning problem with respect to the clique number
    Sukegawa, Noriyoshi
    Miyauchi, Atsushi
    DISCRETE OPTIMIZATION, 2013, 10 (04) : 331 - 332
  • [24] On complexity and approximability of the labeled maximum/perfect matching problems
    Monnot, J
    ALGORITHMS AND COMPUTATION, 2005, 3827 : 934 - 943
  • [25] The clique partition edge-fault numbers of some networks
    Jin, Cheng
    Hao, Rong-Xia
    Cheng, Eddie
    FILOMAT, 2024, 38 (22) : 7923 - 7933
  • [26] Approximability of Clique Transversal in Perfect Graphs
    Fiorini, Samuel
    Krithika, R.
    Narayanaswamy, N. S.
    Raman, Venkatesh
    ALGORITHMICA, 2018, 80 (08) : 2221 - 2239
  • [27] Breakout Local Search for maximum clique problems
    Benlic, Una
    Hao, Jin-Kao
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (01) : 192 - 206
  • [28] The effects of vertex deletion and edge deletion on the clique partition number
    Monson, SD
    ARS COMBINATORIA, 1996, 42 : 89 - 96
  • [29] Approximability of Clique Transversal in Perfect Graphs
    Samuel Fiorini
    R. Krithika
    N. S. Narayanaswamy
    Venkatesh Raman
    Algorithmica, 2018, 80 : 2221 - 2239
  • [30] An Evolutionary Approach to the Maximum Edge Weight Clique Problem
    Fontes, Dalila B. M. M.
    Goncalves, Jose Fernando
    Fontes, Fernando A. C. C.
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2018, 11 (03) : 260 - 266