Topochemical conversion of a dense metal-organic framework from a crystalline insulator to an amorphous semiconductor

被引:61
|
作者
Tominaka, S. [1 ,2 ]
Hamoudi, H. [2 ]
Suga, T. [3 ]
Bennett, T. D. [1 ]
Cairns, A. B. [4 ]
Cheetham, A. K. [1 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[2] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki 3050044, Japan
[3] Waseda Univ, WIAS, Shinjuku Ku, Tokyo 1698555, Japan
[4] Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford OX1 3QR, England
基金
欧洲研究理事会;
关键词
ZEOLITIC IMIDAZOLATE FRAMEWORK; ELECTRICAL-CONDUCTIVITY; COORDINATION POLYMERS; INDUCED AMORPHIZATION; COMPLEXES; CHEMISTRY; VISUALIZATION; OXIDATION; HALIDES; XPS;
D O I
10.1039/c4sc03295k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The topochemical conversion of a dense, insulating metal-organic framework (MOF) into a semiconducting amorphous MOF is described. Treatment of single crystals of copper(I) chloride trithiocyanurate, (CuCl)-Cl-I(ttcH(3)) (ttcH(3) = trithiocyanuric acid), 1, in aqueous ammonia solution yields monoliths of amorphous Cu-1.8(I)(ttc)(0.6)(ttcH(3))(0.4), 3. The treatment changes the transparent orange crystals of 1 into shiny black monoliths of 3 with retention of morphology, and moreover increases the electrical conductivity from insulating to semiconducting (conductivity of 3 ranges from 4.2 x 10(-11) S cm(-1) at 20 degrees C to 7.6 x 10(-9) S cm(-1) at 140 degrees C; activation energy = 0.59 eV; optical band gap = 0.6 eV). The structure and properties of the amorphous conductor are fully characterized by AC impedance spectroscopy, X-ray photoelectron spectroscopy, X-ray pair distribution function analysis, infrared spectroscopy, diffuse reflectance spectroscopy, electron spin resonance spectroscopy, elemental analysis, thermogravimetric analysis, and theoretical calculations.
引用
收藏
页码:1465 / 1473
页数:9
相关论文
共 50 条
  • [41] Highly Crystalline Nanofilm by Layering of Porphyrin Metal-Organic Framework Sheets
    Motoyama, Soichiro
    Makiura, Rie
    Sakata, Osami
    Kitagawa, Hiroshi
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (15) : 5640 - 5643
  • [42] Anhydrous proton conduction at 150 °c in a crystalline metal-organic framework
    Hurd J.A.
    Vaidhyanathan R.
    Thangadurai V.
    Ratcliffe C.I.
    Moudrakovski I.L.
    Shimizu G.K.H.
    Nature Chemistry, 2009, 1 (9) : 705 - 710
  • [43] Crystalline hydrogen bonding of water molecules confined in a metal-organic framework
    Jinhee Bae
    Sun Ho Park
    Dohyun Moon
    Nak Cheon Jeong
    Communications Chemistry, 5
  • [44] Crystalline hydrogen bonding of water molecules confined in a metal-organic framework
    Bae, Jinhee
    Park, Sun Ho
    Moon, Dohyun
    Jeong, Nak Cheon
    COMMUNICATIONS CHEMISTRY, 2022, 5 (01)
  • [45] Enhanced elastic stability of a topologically disordered crystalline metal-organic framework
    Meekel, Emily G.
    Partridge, Phillippa
    Paraoan, Robert A. I.
    Levinsky, Joshua J. B.
    Slater, Ben
    Hobday, Claire L.
    Goodwin, Andrew L.
    NATURE MATERIALS, 2024, 23 (09) : 1245 - 1251
  • [46] Confined amorphous red phosphorus in metal-organic framework as a superior photocatalyst
    Ma, Yuhua
    Tuniyazi, Dilixiati
    Ainiwa, Munire
    Zhu, Enquan
    MATERIALS LETTERS, 2020, 262 (262)
  • [47] Encapsulation of a Metal-Organic Polyhedral in the Pores of a Metal-Organic Framework
    Qiu, Xuan
    Zhong, Wei
    Bai, Cuihua
    Li, Yingwei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (04) : 1138 - 1141
  • [48] A designed metal-organic framework based on a metal-organic polyhedron
    Zou, Yang
    Park, Mira
    Hong, Seunghee
    Lah, Myoung Soo
    CHEMICAL COMMUNICATIONS, 2008, (20) : 2340 - 2342
  • [49] A designed metal-organic framework based on a metal-organic polyhedron
    Park, Mira
    Zou, Yang
    Hong, Seunghee
    Lah, Myoung Soo
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C474 - C474
  • [50] Multi-purpose heterogeneous catalyst material from an amorphous cobalt metal-organic framework
    Ping, Kefeng
    Alam, Mahboob
    Kahnert, Sean Ray
    Bhadoria, Rohit
    Mere, Arvo
    Mikli, Valdek
    Kaarik, Maike
    Aruvali, Jaan
    Paiste, Paarn
    Kikas, Arvo
    Kisand, Vambola
    Jarving, Ivar
    Leis, Jaan
    Kongi, Nadezda
    Starkov, Pavel
    MATERIALS ADVANCES, 2021, 2 (12): : 4009 - 4015