Effects of methane processing strategy on fuel composition, electrical and thermal efficiency of solid oxide fuel cell

被引:14
|
作者
Tu, Baofeng [1 ]
Qi, Huiying [1 ]
Yin, Yanxia [1 ]
Zhang, Tonghuan [1 ]
Liu, Di [1 ]
Han, Shuna [1 ]
Zhang, Fujun [1 ]
Su, Xin [1 ]
Cui, Daan [2 ]
Cheng, Mojie [3 ]
机构
[1] Shandong Univ Sci & Technol, 579 Qianwangang Rd, Qingdao 266590, Peoples R China
[2] Dalian Maritime Univ, Marine Engn Coll, 1 Linghai Rd, Dalian 116026, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, 457 Zhongshan Rd, Dalian 116023, Peoples R China
关键词
Solid oxide fuel cell; Methane processing strategy; Fuel composition; Electrical efficiency; Thermal efficiency; Y2O3-STABILIZED ZRO2 ELECTROLYTE; ELECTROCHEMICAL OXIDATION; CH4-H2O SYSTEM; CARBON-DIOXIDE; STEAM; COKING; ANODES; GAS; EQUILIBRIA; GENERATION;
D O I
10.1016/j.ijhydene.2021.05.128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Natural gas is a cheap and abundant fuel for solid oxide fuel cell (SOFC), generally integrating the SOFC system with methane pre-treating system for improving the stability of SOFC. In this paper, the accurate effects of methane processing strategy on fuel composition, electrical efficiency and thermal efficiency of SOFC are investigated based on the thermodynamic equilibrium. Steam reforming of methane is an endothermic process and can produce 3 mol of H-2 and 1 mol of CO from 1 mol of methane, and thus the electrical efficiency of SOFC is high at the same O/C ratio and equivalent fuel utilization, whereas the thermal efficiency is low. On the contrary, partial oxidation of methane is an exothermal process and only produces 2 mol of H-2 and 1 mol of CO from 1 mol of methane, and thus the electrical efficiency of SOFC is low at the same O/C ratio and equivalent fuel utilization, whereas the thermal efficiency is high. When the O/C ratio is 1.5, the electrical efficiency of SOFC is 55.3% for steam reforming of methane, while 32.7% for partial oxidation of methane. High electrical efficiency of SOFC can be achieved and carbon deposition can be depressed by selecting suitable O/C ratio from methane pretreatment according to the accurate calculation and analysis of effects of different methane processing strategies on the electrical efficiency and thermal efficiency of SOFC. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:26537 / 26549
页数:13
相关论文
共 50 条
  • [31] Effects of methane steam reforming on the mechanical stability of solid oxide fuel cell stack
    Guo, Meiting
    Ru, Xiao
    Yang, Lin
    Ni, Meng
    Lin, Zijing
    APPLIED ENERGY, 2022, 322
  • [32] Efficiency and fuel utilization of methane-powered single-chamber solid oxide fuel cells
    Hao, Yong
    Goodwin, David G.
    JOURNAL OF POWER SOURCES, 2008, 183 (01) : 157 - 163
  • [33] Modeling of thermal impacts in a single direct methane steam reforming solid oxide fuel cell
    Chaudhary, Tariq Nawaz
    Mehmood, Mubbashar
    Saleem, Umer
    Abbasi, Muhammad Salman
    Chen, Baixin
    JOURNAL OF POWER SOURCES, 2020, 472
  • [34] FUEL UTILIZATION EFFECTS ON SYSTEM EFFICIENCY AND SOLID OXIDE FUEL CELL PERFORMANCE IN GAS TURBINE HYBRID SYSTEMS
    Harun, Nor Farida
    Shadle, Lawrence
    Oryshchyn, Danylo
    Tucker, David
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 3, 2017,
  • [35] Stability study of triple layer hollow fiber in solid oxide fuel cell with methane as fuel
    Mohd Hilmi Mohamed
    Mohd Hafiz Dzarfan Othman
    Mohd Zamri Mohd Yusop
    Siti Khadijah Hubadillah
    Yuji Iwamoto
    Suriani Abu Bakar
    Hamzah Fansuri
    Ionics, 2020, 26 : 3073 - 3083
  • [36] Stability study of triple layer hollow fiber in solid oxide fuel cell with methane as fuel
    Mohamed, Mohd Hilmi
    Othman, Mohd Hafiz Dzarfan
    Yusop, Mohd Zamri
    Hubadillah, Siti Khadijah
    Iwamoto, Yuji
    Bakar, Suriani Abu
    Fansuri, Hamzah
    IONICS, 2020, 26 (06) : 3073 - 3083
  • [37] DOE's SECA program: Solid oxide fuel cell applications and fuel processing
    Surdoval, Wayne A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [38] Design and performance analysis of a cascade solid oxide fuel cell system for high electrical efficiency
    Shin, Donghwan
    Kim, Taebeen
    Kang, Sanggyu
    APPLIED THERMAL ENGINEERING, 2021, 195 (195)
  • [39] New proposal to the electrical representation of a solid oxide fuel cell
    Magonski, Zbigniew
    Dziurdzia, Barbara
    MICROELECTRONICS INTERNATIONAL, 2017, 34 (03) : 140 - 148
  • [40] ASSEMBLY AND ELECTRICAL CHARACTERIZATION OF SOLID OXIDE FUEL CELL STACKS
    Taroco, Hosane Aparecida
    de Paula Andrade, Samuel Tadeu
    Brant, Marcia Caldeira
    Domingues, Rosana Zacarias
    Matencio, Tulio
    QUIMICA NOVA, 2009, 32 (05): : 1297 - 1305