Panel count data arise when the number of recurrent events experienced by each subject is observed intermittently at discrete examination times. The examination time process can be informative about the underlying recurrent event process even after conditioning on covariates. We consider a semiparametric accelerated mean model for the recurrent event process and allow the two processes to be correlated through a shared frailty. The regression parameters have a simple marginal interpretation of modifying the time scale of the cumulative mean function of the event process. A novel estimation procedure for the regression parameters and the baseline rate function is proposed based on a conditioning technique. In contrast to existing methods, the proposed method is robust in the sense that it requires neither the strong Poisson-type assumption for the underlying recurrent event process nor a parametric assumption on the distribution of the unobserved frailty. Moreover, the distribution of the examination time process is left unspecified, allowing for arbitrary edpndence between the two processes. Asymptotic consistency of the estimator is established, aend the variance of the estimator is estimated by a model-based smoothed bootstrap procedure. Numerical studies demonstrated that the proposed point estimator and variance estimator perform well with practical sample sizes. The methods are applied to data from a skin cancer chemoprevention trial.
机构:
Hong Kong Polytech Univ, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Hong Kong, Peoples R China
Hu, Xiangbin
Liu, Li
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Wuhan, Peoples R ChinaHong Kong Polytech Univ, Hong Kong, Peoples R China
Liu, Li
Zhang, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nebraska Med Ctr, Omaha, NE 68198 USAHong Kong Polytech Univ, Hong Kong, Peoples R China
Zhang, Ying
Zhao, Xingqiu
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Hong Kong, Peoples R China
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Hong Kong, Peoples R China
机构:
Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USAIndiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
Ge, Lei
Liang, Baosheng
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Publ Hlth, Dept Biostat, Beijing, Peoples R ChinaIndiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
Liang, Baosheng
Hu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, 105 West Third Ring Rd North, Beijing 100037, Peoples R ChinaIndiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
Hu, Tao
Sun, Jianguo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Stat, Columbia, MO USAIndiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
Sun, Jianguo
Zhao, Shishun
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Appl Stat Res Ctr, Sch Math, Changchun, Peoples R ChinaIndiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
Zhao, Shishun
Li, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USAIndiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
机构:
Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN 46202 USA
Northeast Normal Univ, Sch Math & Stat, Changchun 130021, Peoples R China
Northeast Normal Univ, KLAS, Changchun 130021, Peoples R ChinaIndiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN 46202 USA
Ge, Lei
Hu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaIndiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN 46202 USA
Hu, Tao
Li, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN 46202 USA
Indiana Univ, Dept Biostat & Hlth Data Sci, 410 W 10th St,Suite 3000, Indianapolis, IN 46202 USAIndiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN 46202 USA