Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples

被引:126
|
作者
Ruan, Chuanmin [2 ]
Luo, Wensui [2 ]
Wang, Wei [1 ]
Gu, Baohua
机构
[1] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA
[2] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA
关键词
surface-enhanced Raman spectroscopy; uranium detection; groundwater; gold nanoparticles;
D O I
10.1016/j.aca.2007.10.024
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Techniques for rapid screening of uranium in environmental samples are needed, and this study entails the development of surface-enhanced Raman scattering (SERS) for analyzing uranium in aqueous media with improved sensitivity and reproducibility. A new SERS substrate based on (aminomethyl)phosphonic acid (APA)-modified gold nanoparticles was found to give greater than three orders of magnitude SERS enhancement compared with unmodified bare gold nanoparticles. Intensities of uranyl band at about 830 cm(-1) were proportional to the concentrations of uranium in solution, especially at relatively low concentrations (<10(-5) M). A detection limit of similar to 8 x 10(-1) M was achieved with a good reproducibility since the measurement was performed directly in dispersed aqueous suspension. Without pretreatment, the technique was successfully employed for detecting uranium in a highly contaminated groundwater with a low pH, high dissolved salts (e.g., nitrate, sulfate, calcium and aluminum) and total organic carbon. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 86
页数:7
相关论文
共 50 条
  • [1] Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy
    Hatab, Nahla A.
    Eres, Gyula
    Hatzinger, Paul B.
    Gu, Baohua
    JOURNAL OF RAMAN SPECTROSCOPY, 2010, 41 (10) : 1131 - 1136
  • [2] Applications of surface-enhanced Raman spectroscopy in environmental detection
    Terry, Lynn R.
    Sanders, Sage
    Potoff, Rebecca H.
    Kruel, JacobW.
    Jain, Manan
    Guo, Huiyuan
    ANALYTICAL SCIENCE ADVANCES, 2022, 3 (3-4): : 113 - 145
  • [3] Detection of bacteria by surface-enhanced Raman spectroscopy
    Atanu Sengupta
    Mirna Mujacic
    E. James Davis
    Analytical and Bioanalytical Chemistry, 2006, 386 : 1379 - 1386
  • [4] Surface-Enhanced Raman Spectroscopy for Nitrite Detection
    Yang, Dongchang
    Youden, Brian
    Yu, Naizhen
    Carrier, Andrew J.
    Servos, Mark R.
    Oakes, Ken D.
    Zhang, Xu
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2025, 73 (04) : 2221 - 2235
  • [5] Surface-enhanced Raman spectroscopy for the detection of microplastics
    Mikac, L.
    Rigo, I.
    Himics, L.
    Tolic, A.
    Ivanda, M.
    Veres, M.
    APPLIED SURFACE SCIENCE, 2023, 608
  • [6] Detection of bacteria by surface-enhanced Raman spectroscopy
    Sengupta, Atanu
    Mujacic, Mirna
    Davis, E. James
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2006, 386 (05) : 1379 - 1386
  • [7] Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples
    Guo, Huiyuan
    Xing, Baoshan
    Hamlet, Leigh C.
    Chica, Andrea
    He, Lili
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 554 : 246 - 252
  • [8] Surface-Enhanced Raman Scattering Spectroscopy: An Effective Tool for the Detection of Environmental Pollutants
    Sharma, Nancy
    Mehta, Yashneeti
    Khurana, Parul
    Singh, Arvind
    Thatai, Sheenam
    PLASMONICS, 2024,
  • [9] Surface-Enhanced Raman Spectroscopy (SERS) for Environmental Analyses
    Halvorson, Rebecca A.
    Vikesland, Peter J.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (20) : 7749 - 7755
  • [10] Surface-Enhanced Raman Spectroscopy for Environmental Monitoring of Aerosols
    Sivaprakasam, Vasanthi
    Hart, Matthew B.
    ACS OMEGA, 2021, 6 (15): : 10150 - 10159