Continuity of the blow-up profile with respect to initial data and to the blow-up point for a semilinear heat equation

被引:5
|
作者
Khenissy, S. [2 ,3 ]
Rebai, Y. [3 ,4 ]
Zaag, H. [1 ]
机构
[1] Univ Paris 13, Inst Galilee, UMR 7539, LAGA, F-93430 Villetaneuse, France
[2] Univ Tunis El Manar, Inst Super Informat, Dept Math Appl, Ariana 2037, Tunisia
[3] Univ Tunis El Manar FST, UR Anal Non Lineaire & Geometrie 03 UR 15 01, Tunis, Tunisia
[4] Univ 7 Novembre Carthage, Fac Sci Bizerte, Dept Math, Jarzouna 7021, Bizerte, Tunisia
关键词
BEHAVIOR; NONEXISTENCE; REGULARITY; SET; UNIVERSALITY; EXISTENCE; THEOREMS;
D O I
10.1016/j.anihpc.2010.09.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider blow-up solutions for semilinear heat equations with Sobolev subcritical power nonlinearity. Given a blow-up point a, we have from earlier literature, the asymptotic behavior in similarity variables. Our aim is to discuss the stability of that behavior, with respect to perturbations in the blow-up point and in initial data. Introducing the notion of "profile order", we show that it is upper semicontinuous, and continuous only at points where it is a local minimum. (c) 2010 Elsevier Masson SAS. All rights reserved.
引用
下载
收藏
页码:1 / 26
页数:26
相关论文
共 50 条