Holomorphically planar conformal vector fields on contact metric manifolds

被引:5
|
作者
Ghosh, A. [1 ]
机构
[1] Krishnagar Govt Coll, Dept Math, Krishnanagar 741101, WB, India
关键词
HPCV field; contact metric manifold;
D O I
10.1007/s10474-010-0030-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study holomorphically planar conformal vector fields (HPCV) on contact metric manifolds under some curvature conditions. In particular, we have studied HPCV fields on (i) contact metric manifolds with pointwise constant xi-sectional curvature (under this condition M is either K-contact or V is homothetic), (ii) Einstein contact metric manifolds (in this case M becomes K contact), (iii) contact metric manifolds with parallel Ricci tensor (under this condition M is either K-contact Einstein or is locally isometric to E (n+1)xS (n) (4)).
引用
收藏
页码:357 / 367
页数:11
相关论文
共 50 条
  • [31] Bochner and conformal flatness on normal complex contact metric manifolds
    David E. Blair
    Verónica Martín-Molina
    Annals of Global Analysis and Geometry, 2011, 39 : 249 - 258
  • [32] Bochner and conformal flatness on normal complex contact metric manifolds
    Blair, David E.
    Martin-Molina, Veronica
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 39 (03) : 249 - 258
  • [33] Conformal vector fields with respect to the Sasaki metric tensor
    Simsir, F. M.
    Tezer, Cem
    JOURNAL OF GEOMETRY, 2006, 84 (1-2) : 133 - 151
  • [34] Conformal vector fields on vector bundle manifolds with spherically symmetric metrics
    Abbassi, Mohamed Tahar Kadaoui
    Lakrini, Ibrahim
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (3-4): : 289 - 311
  • [35] ON CERTAIN TENSOR-FIELDS ON CONTACT METRIC MANIFOLDS
    ENDO, H
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 42 (1-2): : 51 - 63
  • [36] QAUSI CONFORMAL CURVATURE TENSOR ON N(k)-CONTACT METRIC MANIFOLDS
    Venkatesha
    Kumar, R. T. N.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2016, 85 (01): : 125 - 134
  • [37] Spaces of conformal vector fields on Pseudo-Riemannian manifolds
    Kim, DS
    Kim, YH
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (03) : 471 - 484
  • [38] Conformal Vector Fields on Doubly Warped Product Manifolds and Applications
    El-Sayied, H. K.
    Shenawy, Sameh
    Syied, Noha
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [39] CONFORMAL VECTOR FIELDS ON ALMOST CO-KAHLER MANIFOLDS
    De, Uday Chand
    Suh, Young Jin
    Chaubey, Sudhakar K.
    MATHEMATICA SLOVACA, 2021, 71 (06) : 1545 - 1552
  • [40] Conformal Vector Fields and Their Applications to Einstein-Type Manifolds
    Seungsu Hwang
    Gabjin Yun
    Results in Mathematics, 2024, 79