On the dimension effect of regularized linear discriminant analysis

被引:9
|
作者
Wang, Cheng [1 ]
Jiang, Binyan [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
来源
ELECTRONIC JOURNAL OF STATISTICS | 2018年 / 12卷 / 02期
基金
中国国家自然科学基金;
关键词
Dimension effect; linear discriminant analysis; random matrix theory; regularized linear discriminant analysis; PRECISION MATRIX; MISCLASSIFICATION; CLASSIFICATION; PROBABILITIES; ASYMPTOTICS; VARIANCE;
D O I
10.1214/18-EJS1469
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the dimension effect of the linear discriminant analysis (LDA) and the regularized linear discriminant analysis (RLDA) classifiers for large dimensional data where the observation dimension p is of the same order as the sample size n. More specifically, built on properties of the Wishart distribution and recent results in random matrix theory, we derive explicit expressions for the asymptotic misclassification errors of LDA and RLDA respectively, from which we gain insights of how dimension affects the performance of classification and in what sense. Motivated by these results, we propose adjusted classifiers by correcting the bias brought by the unequal sample sizes. The bias-corrected LDA and RLDA classifiers are shown to have smaller misclassification rates than LDA and RLDA respectively. Several interesting examples are discussed in detail and the theoretical results on dimension effect are illustrated via extensive simulation studies.
引用
收藏
页码:2709 / 2742
页数:34
相关论文
共 50 条
  • [11] Regularized Linear Discriminant Analysis of EEG Features in Dementia Patients
    Neto, Emanuel
    Biessmann, Felix
    Aurlien, Harald
    Nordby, Helge
    Eichele, Tom
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2016, 8
  • [12] Stochastic discriminant analysis for linear supervised dimension reduction
    Juuti, Mika
    Corona, Francesco
    Karhunen, Juha
    [J]. NEUROCOMPUTING, 2018, 291 : 136 - 150
  • [13] Regularized linear discriminant analysis of wavelet compressed ion mobility spectra
    Mehay, AW
    Cai, CS
    Harrington, PD
    [J]. APPLIED SPECTROSCOPY, 2002, 56 (02) : 223 - 231
  • [14] Regularized Linear Discriminant Analysis Using a Nonlinear Covariance Matrix Estimator
    Mahadi, Maaz
    Ballal, Tarig
    Moinuddin, Muhammad
    Al-Naffouri, Tareq Y.
    Al-Saggaf, Ubaid M.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1049 - 1064
  • [15] A Doubly Regularized Linear Discriminant Analysis Classifier With Automatic Parameter Selection
    Zaib, Alam
    Ballal, Tarig
    Khattak, Shahid
    Al-Naffouri, Tareq Y.
    [J]. IEEE ACCESS, 2021, 9 : 51343 - 51354
  • [16] A feature selection method using improved regularized linear discriminant analysis
    Sharma, Alok
    Paliwal, Kuldip K.
    Imoto, Seiya
    Miyano, Satoru
    [J]. MACHINE VISION AND APPLICATIONS, 2014, 25 (03) : 775 - 786
  • [17] Locality-regularized linear regression discriminant analysis for feature extraction
    Huang, Pu
    Li, Tao
    Shu, Zhenqiu
    Gao, Guangwei
    Yang, Geng
    Qian, Chengshan
    [J]. INFORMATION SCIENCES, 2018, 429 : 164 - 176
  • [18] Optimized regularized linear discriminant analysis for feature extraction in face recognition
    Xiaoheng Tan
    Lu Deng
    Yang Yang
    Qian Qu
    Li Wen
    [J]. Evolutionary Intelligence, 2019, 12 : 73 - 82
  • [19] Regularized Complete Linear Discriminant Analysis for Small Sample Size Problems
    Yang, Wuyi
    [J]. EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, 2012, 304 : 67 - 73
  • [20] Optimized regularized linear discriminant analysis for feature extraction in face recognition
    Tan, Xiaoheng
    Deng, Lu
    Yang, Yang
    Qu, Qian
    Wen, Li
    [J]. EVOLUTIONARY INTELLIGENCE, 2019, 12 (01) : 73 - 82