Spatio temporal hydrological extreme forecasting framework using LSTM deep learning model

被引:18
|
作者
Anshuka, Anshuka [1 ]
Chandra, Rohitash [2 ]
Buzacott, Alexander J., V [3 ]
Sanderson, David [1 ]
van Ogtrop, Floris F. [3 ]
机构
[1] Univ New South Wales, Fac Arts Design & Architecture, Sch Built Environm, Sydney, NSW, Australia
[2] Univ New South Wales, Sch Math & Stat, Transit Artificial Intelligence Res Grp, Sydney, NSW, Australia
[3] Univ Sydney, Fac Sci, Sch Life & Environm Sci, Sydney, NSW, Australia
关键词
Deep learning; LSTM; Hydrological extremes; Spatio temporal forecasts; Principal components analysis; South Pacific; NEURAL-NETWORK; SOUTH-PACIFIC; RAINFALL; PREDICTION; PRECIPITATION; FIJI; QUANTIFICATION; UNCERTAINTY; TEMPERATURE; VARIABILITY;
D O I
10.1007/s00477-022-02204-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydrological extremes occupy a large spatial extent, with a temporal sequence, both of which can be influenced by a range of climatological and geographical phenomena. Understanding the key information in the spatial and temporal domain is essential to make accurate forecasts. The capabilities of deep learning methods can be applied in such instances due to their enhanced ability in learning complex relationships. Given its success in other domains, this study presents a framework that features a long short-term memory deep learning model for spatio temporal hydrological extreme forecasting in the South Pacific region. The data consists of satellite rainfall estimates and sea surface temperature (SST) anomalies. We use the satellite rainfall estimate to calculate the effective drought index (EDI), an indicator of hydrological extreme events. The framework is developed to forecast monthly EDI using three different approaches: (i) univariate (ii) multivariate with neighbouring spatial points (iii) multivariate with neighbouring spatial points and the eigenvector values of SST. Additionally, better identification of extreme wet events is noted with the inclusion of the eigenvector values of SST. By establishing the framework for the multivariate approach in two forms, it is evident that the model accuracy is contingent on understanding the dominant feature which influences precipitation regimes in the Pacific. The framework can be used to better understand linear and non-linear relationships within multi-dimensional data in other study regions, and provide long-term climate outlooks.
引用
收藏
页码:3467 / 3485
页数:19
相关论文
共 50 条
  • [11] Deep Latent Factor Model for Spatio-Temporal Forecasting
    Koo, Wonmo
    Ma, Eun-Yeol
    Kim, Heeyoung
    TECHNOMETRICS, 2024, 66 (03) : 470 - 482
  • [12] An integrated CEEMDAN and TCN-LSTM deep learning framework for forecasting
    Cai, Xiaotong
    Yuan, Bo
    Wu, Chao
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2025, 98
  • [13] Using deep learning for precipitation forecasting based on spatio-temporal information: a case study
    Weide Li
    Xi Gao
    Zihan Hao
    Rong Sun
    Climate Dynamics, 2022, 58 : 443 - 457
  • [14] Using deep learning for precipitation forecasting based on spatio-temporal information: a case study
    Li, Weide
    Gao, Xi
    Hao, Zihan
    Sun, Rong
    CLIMATE DYNAMICS, 2022, 58 (1-2) : 443 - 457
  • [15] A novel framework for spatio-temporal prediction of environmental data using deep learning
    Federico Amato
    Fabian Guignard
    Sylvain Robert
    Mikhail Kanevski
    Scientific Reports, 10
  • [16] A novel framework for spatio-temporal prediction of environmental data using deep learning
    Amato, Federico
    Guignard, Fabian
    Robert, Sylvain
    Kanevski, Mikhail
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [17] Hydrological Drought Forecasting Using a Deep Transformer Model
    Amanambu, Amobichukwu C.
    Mossa, Joann
    Chen, Yin-Hsuen
    WATER, 2022, 14 (22)
  • [18] Hybrid Spatio-temporal Deep Learning Framework for Particulate Matter(PM2.5) Concentration Forecasting
    Abirami, S.
    Chitra, P.
    Madhumitha, R.
    Kesavan, Ragul S.
    2020 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY (ICITIIT), 2020,
  • [19] A multivariable sensor-agnostic framework for spatio-temporal air quality forecasting based on Deep Learning
    Prado-Rujas, Ignacio-Iker
    Garcia-Dopico, Antonio
    Serrano, Emilio
    Cordoba, M. Luisa
    Perez, Maria S.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [20] Forecasting Rice Production in Luzon Using Integrated Spatio-Temporal Forecasting Framework
    Urrutia, Jackie D.
    Bedaa, Joshua Sy
    Combalicer, Chloe Bernice, V
    Mingo, Francis Leo T.
    PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: DEEPENING MATHEMATICAL CONCEPTS FOR WIDER APPLICATION THROUGH MULTIDISCIPLINARY RESEARCH AND INDUSTRIES COLLABORATIONS, 2019, 2192