High-temperature heat capacity and thermal expansion of the MnTa2O6

被引:13
|
作者
Gulyaeva, R., I [1 ]
Petrova, S. A. [2 ]
Chumarev, V. M. [1 ]
Selivanov, E. N. [1 ]
机构
[1] Russian Acad Sci, Lab Pyromet Nonferrous Met, Inst Met, Ural Branch, 101 Amundsen St, Ekaterinburg 620016, Russia
[2] Russian Acad Sci, Lab Phys Chem Met Melts, Inst Met, Ural Branch, 101 Amundsen St, Ekaterinburg 620016, Russia
关键词
Heat capacity; Thermal expansion; Manganese tantalate; CRYSTAL-STRUCTURE; DIELECTRIC-PROPERTIES; STABILIZED ZIRCONIA; MN; MNNB2O6; PHASES; COLUMBITES; REFINEMENT; ELECTRODE; ENTHALPY;
D O I
10.1016/j.jallcom.2020.155153
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sample of the MnTa2O6 manganese tantalate was synthesized from MnO and Ta2O5 mixture by the ceramic technique. According to XRD it was a single-phase sample with an orthorhombic structure (sp.gr. Pbcn) and unit cell parameters: a = 14.4478(2) angstrom; b = 5.7677(1) angstrom; c = 5.0943(1) angstrom; V = 424.52(1) angstrom(3) . Heat capacity was measured by differential scanning calorimetry in the range of 323-1203 K in a dynamic mode. Experimental molar heat capacity was fitted to C-p.m = 191.33 + 67.451 x 10(-3) T 32.71 x 10(5) T-2 - 18.76 x 10(-6) T-2 equation based on which the value of the C-p.m29(8.15)(MnTa2O6) = 173.0 +/- 1.7 J mol(-1)K(-1) was calculated. By HT-XRD thermal dependences of the MnTa2O6 unit cell parameters in the temperature range of 300-1203 K were established. From the data obtained thermal expansion coefficients and anisotropy factors were calculated. Thermal expansion anisotropy was linked to the layered structure of the oxide. The correlation among molar heat capacity values and volume thermal expansion coefficients were revealed. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] HIGH-TEMPERATURE THERMAL EXPANSION OF ROCKSALT
    MERRIAM, MF
    WIEGAND, DA
    SMOLUCHOWSKI, R
    PHYSICAL REVIEW, 1962, 125 (01): : 65 - &
  • [22] Synthesis and High-Temperature Heat Capacity of Y2Ge2O7
    L. T. Denisova
    L. A. Irtyugo
    Yu. F. Kargin
    V. V. Beletskii
    V. M. Denisov
    Russian Journal of Inorganic Chemistry, 2018, 63 : 361 - 363
  • [23] Synthesis and high-temperature heat capacity of Gd2Sn2O7
    L. T. Denisova
    L. A. Irtyugo
    Yu. F. Kargin
    V. V. Beletskii
    V. M. Denisov
    Inorganic Materials, 2016, 52 : 584 - 586
  • [24] High-temperature heat capacity of CdO–V2O5 oxides
    L. T. Denisova
    L. G. Chumilina
    N. V. Belousova
    V. M. Denisov
    N. A. Galiakhmetova
    Physics of the Solid State, 2017, 59 : 2519 - 2523
  • [25] High-temperature heat capacity of CdO-V2O5 oxides
    Denisova, L. T.
    Chumilina, L. G.
    Belousova, N. V.
    Denisov, V. M.
    Galiakhmetova, N. A.
    PHYSICS OF THE SOLID STATE, 2017, 59 (12) : 2519 - 2523
  • [26] High-temperature heat capacity of copper metaborate CuB2O4
    V. M. Denisov
    L. T. Denisova
    L. A. Irtyugo
    N. V. Volkov
    G. S. Patrin
    L. G. Chumilina
    Physics of the Solid State, 2012, 54 : 2142 - 2144
  • [27] High-temperature heat capacity of copper metaborate CuB2O4
    Denisov, V. M.
    Denisova, L. T.
    Irtyugo, L. A.
    Volkov, N. V.
    Patrin, G. S.
    Chumilina, L. G.
    PHYSICS OF THE SOLID STATE, 2012, 54 (10) : 2142 - 2144
  • [28] Synthesis and High-Temperature Heat Capacity of Y2Ge2O7
    Denisova, L. T.
    Irtyugo, L. A.
    Kargin, Yu F.
    Beletskii, V. V.
    Denisov, V. M.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2018, 63 (03) : 361 - 363
  • [29] Synthesis and high-temperature heat capacity of Gd2Sn2O7
    Denisova, L. T.
    Irtyugo, L. A.
    Kargin, Yu. F.
    Beletskii, V. V.
    Denisov, V. M.
    INORGANIC MATERIALS, 2016, 52 (06) : 584 - 586
  • [30] The high-temperature expansion of the thermal sunset
    Ekstedt, Andreas
    Lofgren, Johan
    SCIPOST PHYSICS CORE, 2020, 3 (02):