A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte

被引:1213
|
作者
Li, Youbing [1 ,2 ]
Shao, Hui [3 ,4 ]
Lin, Zifeng [5 ]
Lu, Jun [6 ]
Liu, Liyuan [3 ,4 ]
Duployer, Benjamin [3 ,4 ]
Persson, Per O. A. [6 ]
Eklund, Per [6 ]
Hultman, Lars [6 ]
Li, Mian [1 ]
Chen, Ke [1 ]
Zha, Xian-Hu [1 ]
Du, Shiyu [1 ]
Rozier, Patrick [3 ,4 ]
Chai, Zhifang [1 ]
Raymundo-Pinero, Encarnacion [4 ,7 ]
Taberna, Pierre-Louis [3 ,4 ]
Simon, Patrice [3 ,4 ,8 ]
Huang, Qing [1 ]
机构
[1] Chinese Acad Sci, Mat Ningbo Inst Mat Technol & Engn, Engn Lab Adv Energy Mat, Ningbo, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Univ Toulouse, CNRS, CIRIMAT, Toulouse, France
[4] CNRS, RS2E, Amiens, France
[5] Sichuan Univ, Coll Mat Sci & Engn, Chengdu, Peoples R China
[6] Linkoping Univ, Dept Phys Chem & Biol IFM, Thin Film Phys Div, Linkoping, Sweden
[7] Univ Orleans, CNRS, CEMHTI UPR3079, Orleans, France
[8] Inst Univ France, Paris, France
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CHARGE STORAGE; ENERGY-STORAGE; INTERCALATION;
D O I
10.1038/s41563-020-0657-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional transition metal carbides and nitrides, known as MXenes, are currently considered as energy storage materials. A generic Lewis acidic etching route for preparing high-rate negative-electrode MXenes with enhanced electrochemical performance in non-aqueous electrolyte is now proposed. Two-dimensional carbides and nitrides of transition metals, known as MXenes, are a fast-growing family of materials that have attracted attention as energy storage materials. MXenes are mainly prepared from Al-containing MAX phases (where A = Al) by Al dissolution in F-containing solution; most other MAX phases have not been explored. Here a redox-controlled A-site etching of MAX phases in Lewis acidic melts is proposed and validated by the synthesis of various MXenes from unconventional MAX-phase precursors with A elements Si, Zn and Ga. A negative electrode of Ti3C2 MXene material obtained through this molten salt synthesis method delivers a Li+ storage capacity of up to 738 C g(-1) (205 mAh g(-1)) with high charge-discharge rate and a pseudocapacitive-like electrochemical signature in 1 M LiPF6 carbonate-based electrolyte. MXenes prepared via this molten salt synthesis route may prove suitable for use as high-rate negative-electrode materials for electrochemical energy storage applications.
引用
收藏
页码:894 / +
页数:7
相关论文
共 50 条
  • [21] The electrochemical performance of electrodeposited chitosan bio-nanopolymer in non-aqueous electrolyte: a new anodic material for supercapacitor
    Patake, V. D.
    Ghogare, T. T.
    Gulbake, A. D.
    Lokhande, C. D.
    SN APPLIED SCIENCES, 2019, 1 (09):
  • [22] A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance
    Prosini, PP
    Carewska, M
    Scaccia, S
    Wisniewski, P
    Passerini, S
    Pasquali, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (07) : A886 - A890
  • [23] OBSERVATION AND ANALYSIS OF CARBIDES IN STEELS USING NON-AQUEOUS ELECTROLYTE-POTENTIOSTATIC ETCHING METHOD
    KUROSAWA, F
    TAGUCHI, I
    MATSUMOTO, R
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1980, 44 (11) : 1288 - 1295
  • [24] OBSERVATION AND ANALYSIS OF NITRIDES IN STEELS USING THE NON-AQUEOUS ELECTROLYTE-POTENTIOSTATIC ETCHING METHOD
    KUROSAWA, F
    TAGUCHI, I
    TANINO, M
    MATSUMOTO, R
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1981, 45 (01) : 63 - 71
  • [25] OBSERVATION AND ANALYSIS OF SULFIDES IN STEELS USING NON-AQUEOUS ELECTROLYTE-POTENTIOSTATIC ETCHING METHOD
    KUROSAWA, F
    TAGUCHI, I
    TANINO, M
    MATSUMOTO, R
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1980, 44 (06) : 677 - 686
  • [26] OBSERVATION AND ANALYSIS OF PHOSPHIDES IN STEELS USING A NON-AQUEOUS ELECTROLYTE-POTENTIOSTATIC ETCHING METHOD
    KUROSAWA, F
    TAGUCHI, I
    MATSUMOTO, R
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1980, 44 (05) : 539 - 548
  • [27] Understanding the enhanced electrochemical performance of TEMPO derivatives in non-aqueous lithium ion redox flow batteries
    Ok, Byeori
    Na, Wonjun
    Kwon, Tae-Hoon
    Kwon, Young-Wan
    Cho, Sangho
    Hong, Soon Man
    Lee, Albert S.
    Lee, Jin Hong
    Koo, Chong Min
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 80 : 545 - 550
  • [28] The Electroactive Species and Electrolyte Solution Chemistry Importance in Non-Aqueous Mg Electrochemical Systems
    Dlugatch, Ben
    Kumar, Yogendra
    Attias, Ran
    Salama, Michael
    Bravo-Zhivotovskia, Dmitry
    Noked, Malachi
    Aurbach, Doron
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (02)
  • [29] Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte
    Sun, Qian
    Yang, Yin
    Fu, Zheng-Wen
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 16 (01) : 22 - 25
  • [30] Cd1-xZnxTe thin films formed by non-aqueous electrochemical route
    Chaure, N. B.
    Chaure, Shweta
    Pandey, R. K.
    ELECTROCHIMICA ACTA, 2008, 54 (02) : 296 - 304