Maximum likelihood estimation for semiparametric regression models with panel count data

被引:8
|
作者
Zeng, Donglin [1 ]
Lin, D. Y. [1 ]
机构
[1] Univ N Carolina, Dept Biostat, 3101 McGavran Greenberg Hall, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
EM algorithm; Interval censoring; Nonhomogeneous Poisson process; Nonparametric likelihood; Proportional means model; Random effect; Recurrent event; Semiparametric efficiency; Time-dependent covariate;
D O I
10.1093/biomet/asaa091
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Panel count data, in which the observation for each study subject consists of the number of recurrent events between successive examinations, are commonly encountered in industrial reliability testing, medical research and other scientific investigations. We formulate the effects of potentially time-dependent covariates on one or more types of recurrent events through nonhomogeneous Poisson processes with random effects. We employ nonparametric maximum likelihood estimation under arbitrary examination schemes, and develop a simple and stable EM algorithm. We show that the resulting estimators of the regression parameters are consistent and asymptotically normal, with a covariance matrix that achieves the semiparametric efficiency bound and can be estimated using profile likelihood. We evaluate the performance of the proposed methods through simulation studies and analysis of data from a skin cancer clinical trial.
引用
收藏
页码:947 / 963
页数:17
相关论文
共 50 条
  • [41] Robust Estimation of Semiparametric Transformation Model for Panel Count Data
    Yan Feng
    Yijun Wang
    Weiwei Wang
    Zhuo Chen
    Journal of Systems Science and Complexity, 2021, 34 : 2334 - 2356
  • [42] Dual Generalized Maximum Entropy Estimation for Panel Data Regression Models
    Lee, Jaejun
    Cheon, Sooyoung
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2014, 21 (05) : 395 - 409
  • [43] Semiparametric regression of multivariate panel count data with informative observation times
    Li, Yang
    He, Xin
    Wang, Haiying
    Zhang, Bin
    Sun, Jianguo
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 140 : 209 - 219
  • [44] Semiparametric regression for count data
    Carota, C
    Parmigiani, G
    BIOMETRIKA, 2002, 89 (02) : 265 - 281
  • [45] Semiparametric regression analysis of panel count data with informative observation times
    Zhao, Xingqiu
    Tong, Xingwei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 291 - 300
  • [46] Maximum likelihood estimation of dynamic panel threshold models
    Ramirez-Rondan, N. R.
    ECONOMETRIC REVIEWS, 2020, 39 (03) : 260 - 276
  • [47] Semiparametric estimation of on-stie count data models
    Narukawa, Masaki
    Nohara, Katsuhito
    ECONOMICS BULLETIN, 2011, 31 (01): : 584 - 590
  • [48] SEMIPARAMETRIC MAXIMUM-LIKELIHOOD-ESTIMATION OF POLYCHOTOMOUS AND SEQUENTIAL CHOICE MODELS
    LEE, LF
    JOURNAL OF ECONOMETRICS, 1995, 65 (02) : 381 - 428
  • [49] A semiparametric regression model for panel count data: When do pseudo-likelihood estimators become badly inefficient?
    Wellner, JA
    Zhang, Y
    Liu, H
    PROCEEDINGS OF THE SECOND SEATTLE SYMPOSIUM IN BIOSTATISTICS: ANALYSIS OF CORRELATED DATA, 2004, 179 : 143 - 174
  • [50] Maximum likelihood estimation of endogenous switching regression models
    Lokshin, Michael
    Sajaia, Zurab
    STATA JOURNAL, 2004, 4 (03): : 282 - 289