Growth and spatially resolved luminescence of low dimensional structures in sintered ZnO

被引:50
|
作者
Grym, J [1 ]
Fernández, P [1 ]
Piqueras, J [1 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Mat, E-28040 Madrid, Spain
关键词
D O I
10.1088/0957-4484/16/6/051
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sintering of ZnO pressed powder under Ar flow at temperatures between 1250 and 1300 degrees C leads to the formation of elongated microstructures and nanostructures, with different morphologies, on the sample surface. Rods and needles with cross-sectional dimensions ranging from tens of nanometres to several tens of microns and up to hundreds of microns in length are obtained. In an advanced stage of growth, nanoneedles are frequently arranged in bundles, forming the walls of tubes with different cross-sectional dimensions. In addition, microcombs and microfeathers consisting of well oriented nanoneedles are observed. Cathodoluminescence (CL) in the scanning electron microscope (SEM) has been used to characterize the structures grown. The formation of the elongated structures causes spectral changes, in particular an enhancement of the green-orange luminescence. High CL emission from the internal surface of the tubes has been observed.
引用
收藏
页码:931 / 935
页数:5
相关论文
共 50 条
  • [11] Spatially resolved detection of luminescence: a unique tool for archaeochronometry
    Greilich, S
    Glasmacher, UA
    Wagner, GA
    NATURWISSENSCHAFTEN, 2002, 89 (08) : 371 - 375
  • [12] Spatially resolved detection of luminescence: a unique tool for archaeochronometry
    Steffen Greilich
    Ulrich A. Glasmacher
    Günther A. Wagner
    Naturwissenschaften, 2002, 89 : 371 - 375
  • [13] Spatially resolved cathodoluminescence spectra of excitons in a ZnO microparticle
    Hirai, Takeshi
    Ohno, Nobuhito
    Harada, Yoshiyuki
    Horii, Taku
    Sawada, Yuji
    Itoh, Tadashi
    APPLIED PHYSICS LETTERS, 2008, 93 (04)
  • [14] Spatially-resolved cathodoluminescence spectroscopy of ZnO defects
    Brillson, L. J.
    Ruane, W. T.
    Gao, H.
    Zhang, Y.
    Luo, J.
    von Wenckstern, H.
    Grundmann, M.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 57 : 197 - 209
  • [15] Spatially resolved photoluminescence study of single ZnO tetrapods
    Feng, L.
    Cheng, C.
    Lei, M.
    Wang, N.
    Loy, M. M. T.
    NANOTECHNOLOGY, 2008, 19 (40)
  • [16] Spatially resolved two-dimensional spectroscopy
    Adalsteinsson, E
    Spielman, DM
    MAGNETIC RESONANCE IN MEDICINE, 1999, 41 (01) : 8 - 12
  • [17] ENERGY-TRANSPORT STUDIES USING SPATIALLY RESOLVED LUMINESCENCE
    HIRLIMANN, C
    ABBI, SC
    DIARRA, M
    APPLIED OPTICS, 1981, 20 (11): : 1955 - 1958
  • [18] AgesGalore - A software program for evaluating spatially resolved luminescence data
    Greilich, S.
    Harney, H. -L.
    Woda, C.
    Wagner, G. A.
    RADIATION MEASUREMENTS, 2006, 41 (06) : 726 - 735
  • [19] Spatially resolved luminescence properties of etched quantum well microstructures
    Landesman, J. P.
    Diak, E.
    LaPierre, R. R.
    Levallois, C.
    Ghanad-Tavakoli, S.
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (12)
  • [20] Spatially resolved X-ray excited optical luminescence
    Martinez-Criado, G.
    Alen, B.
    Sans, J. A.
    Homs, A.
    Kieffer, I.
    Tucoulou, R.
    Cloetens, P.
    Segura-Ruiz, J.
    Susini, J.
    Yoo, J.
    Yi, G.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2012, 284 : 36 - 39