Comparison of quasi-spherical surfaces using spherical harmonics: Application to corneal biometry

被引:0
|
作者
Polette, Arnaud [1 ,2 ]
Mari, Jean-Luc [1 ]
Brunette, Isabelle [3 ]
Meunier, Jean [2 ,4 ]
机构
[1] Aix Marseille Univ, CNRS, LSIS UMR 7296, Marseille, France
[2] Univ Montreal, Dept Comp Sci & Operat Res DIRO, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Dept Ophthalmol, Maisonneuve Rosemont Hosp, Montreal, PQ H3C 3J7, Canada
[4] Univ Montreal, Inst Biomed Engn, Montreal, PQ H3C 3J7, Canada
关键词
Geometric modeling; surface matching; biometry; cornea; spherical harmonics;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The purpose of this study is to authenticate a surface from a set of surfaces based on 3D acquisitions in the context of corneal biometric application. The key idea is to quantify the difference between surfaces, and to define a threshold to determine if compared surfaces belong to the same person. This threshold depends on the normal variation between acquisitions of a same subject, and on the measurement noise. The proposed approach consists in comparing coefficients from a spherical harmonics decomposition. First we present basic concepts about corneal measurement and previous works related to corneal surface comparison. Then spherical harmonics are presented, followed by a description of our method. Finally, our approach is compared to the existing one: better false-match rate and false-non-match rate have been observed with the proposed method.
引用
收藏
页码:308 / 312
页数:5
相关论文
共 50 条
  • [1] Comparison of quasi-spherical surfaces - application to corneal biometry
    Polette, Arnaud
    Mari, Jean-Luc
    Brunette, Isabelle
    Meunier, Jean
    [J]. IET BIOMETRICS, 2016, 5 (03) : 212 - 219
  • [2] Fermion quasi-spherical harmonics
    Hunter, G
    Ecimovic, P
    Schlifer, I
    Walker, IM
    Beamish, D
    Donev, S
    Kowalski, M
    Arslan, S
    Heck, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (05): : 795 - 803
  • [3] Are Nanoparticles Spherical or Quasi-Spherical?
    Sokolov, Stanislav V.
    Batchelor-McAuley, Christopher
    Tschulik, Kristina
    Fletcher, Stephen
    Compton, Richard G.
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (30) : 10741 - 10746
  • [4] Quasi-spherical superclusters
    Heinamaki, P.
    Teerikorpi, P.
    Douspis, M.
    Nurmi, P.
    Einasto, M.
    Gramann, M.
    Nevalainen, J.
    Saar, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2022, 668
  • [5] A dynamical symmetry of the quasi-spherical (or spherical) collapse
    Debnath, U
    Chakraborty, S
    Dadhich, N
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (10): : 1761 - 1767
  • [6] QUASI-SPHERICAL GRAVITATIONAL COLLAPSE
    SZEKERES, P
    [J]. PHYSICAL REVIEW D, 1975, 12 (10): : 2941 - 2948
  • [7] Quasi-spherical metrics and applications
    Shi, YG
    Tam, LF
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 250 (01) : 65 - 80
  • [8] Quasi-Spherical Metrics and Applications
    Yuguang Shi
    [J]. Communications in Mathematical Physics, 2004, 250 : 65 - 80
  • [9] Quasi-spherical collapse with cosmological constant
    Debnath, Ujjal
    Nath, Soma
    Chakraborty, Subenoy
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 369 (04) : 1961 - 1964
  • [10] Quasi-spherical collapse of matter in ΛCDM
    Rampf, Cornelius
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (04) : 5223 - 5235