Ionic Conduction Mechanism and Design of Metal-Organic Framework Based Quasi-Solid-State Electrolytes

被引:47
|
作者
Hou, Tingzheng [1 ,2 ]
Xu, Wentao [3 ]
Pei, Xiaokun [3 ]
Jiang, Lu [1 ,5 ]
Yaghi, Omar M. [3 ]
Persson, Kristin A. [1 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
关键词
TEMPERATURE; MORPHOLOGY; TRANSPORT; LIPF6;
D O I
10.1021/jacs.2c03710
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the theoretical and experimental investigation of two polyoxometalate-based metal-organic frameworks (MOFs), [(MnMo6)(2)(TFPM)](imine) and [(AlMo6)(2)(TFPM)](imine), as quasi-solid-state electrolytes. Classical molecular dynamics coupled with quantum chemistry and grand canonical Monte Carlo are utilized to model the corresponding diffusion and ionic conduction in the two materials. Using different approximate levels of ion diffusion behavior, the primary ionic conduction mechanism was identified as solvent-assisted hopping (> 77%). Detailed static and dynamic solvation structures were obtained to interpret Li+ motion with high spatial and temporal resolution. A rationally designed noninterpenetrating MOF-688(one-fold) material is proposed to achieve 6-8 times better performance (1.6-1.7 mS cm(-1)) than the current state-of-the-art (0.19-0.35 mS cm(-1)).
引用
收藏
页码:13446 / 13450
页数:5
相关论文
共 50 条
  • [1] Enhanced Ionic Conduction in Metal-Organic-Framework-Based Quasi-Solid-State Electrolytes: Mechanistic Insights
    Bao, Hongfei
    Chen, Diancheng
    Liao, Beiqi
    Yi, Yuhao
    Liu, Runtao
    Sun, Yang
    [J]. ENERGY & FUELS, 2024, 38 (12) : 11275 - 11283
  • [2] Strategies to improve the ionic conductivity of quasi-solid-state electrolytes based on metal-organic frameworks
    Chen, Chuan
    Luo, Xiangyi
    [J]. NANOTECHNOLOGY, 2024, 35 (36)
  • [3] Deep dive into anionic metal-organic frameworks based quasi-solid-state electrolytes
    Hou, Tingzheng
    Xu, Wentao
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2023, 81 : 313 - 320
  • [4] Deep dive into anionic metal-organic frameworks based quasi-solid-state electrolytes
    Tingzheng Hou
    Wentao Xu
    [J]. Journal of Energy Chemistry, 2023, (06) : 313 - 320
  • [5] Transparent Metal-Organic Framework-Based Gel Electrolytes for Generalized Assembly of Quasi-Solid-State Electrochromic Devices
    Bai, Zhiyuan
    Li, Ran
    Li, Kerui
    Hou, Chengyi
    Zhang, Qinghong
    Li, Yaogang
    Wang, Hongzhi
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (38) : 42955 - 42961
  • [6] Ionic Liquid-Incorporated Metal-Organic Framework with High Magnesium Ion Conductivity for Quasi-Solid-State Magnesium Batteries
    Wei, Zhixuan
    Maile, Ruben
    Riegger, Luise M.
    Rohnke, Marcus
    Mueller-Buschbaum, Klaus
    Janek, Jurgen
    [J]. BATTERIES & SUPERCAPS, 2022, 5 (12)
  • [7] Ionic Liquid (IL) Laden Metal-Organic Framework (IL-MOF) Electrolyte for Quasi-Solid-State Sodium Batteries
    Yu, Xingwen
    Grundish, Nicholas S.
    Goodenough, John B.
    Manthiram, Arumugam
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (21) : 24662 - 24669
  • [8] Confining Ionic Liquids in Developing Quasi-Solid-State Electrolytes for Lithium Metal Batteries
    Hu, Haiman
    Li, Jiajia
    Ji, Xiaoyan
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (05)
  • [9] Charge-Delocalized Triptycene-Based Ionic Porous Organic Polymers as Quasi-Solid-State Electrolytes for Lithium Metal Batteries
    Yuan, Yufei
    Wang, Dan-Dong
    Zhang, Zhengyang
    Bang, Ki-Taek
    Wang, Rui
    Chen, Huanhuan
    Wang, Yanming
    Kim, Yoonseob
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (34) : 44957 - 44966
  • [10] Phosphorization Engineering on Metal-Organic Frameworks for Quasi-Solid-State Asymmetry Supercapacitors
    Wei, Xijun
    Song, Yingze
    Song, Lixian
    Liu, Xu Dong
    Li, Yanhong
    Yao, Shuangrui
    Xiao, Peng
    Zhang, Yunhuai
    [J]. SMALL, 2021, 17 (04)