Dynamical Properties of a Periodic Mass-Spring Nonlinear Seismic Metamaterial

被引:3
|
作者
Zivieri, R. [1 ,2 ]
机构
[1] Univ Messina, Phys Sci & Earth Sci, Dept Math & Comp Sci, Messina, Italy
[2] Ist Nazl Alta Matemat INdAM, Rome, Italy
关键词
D O I
10.1109/metamaterials49557.2020.9285057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nonlinear seismic metamaterials are a challenging class of acoustic metamaterials that are receiving growing attention. Here, it is shown that, in the presence of third-order forces, in a periodic arrangement of an anharmonic mass-spring system, the rectangular bipolar pulse distribution, ansatz solution of the equation of motion, can be projected onto the exact solution. This latter is derived casting the equation of motion in the form of a cubic Duffing differential equation and describes the wave propagating inside the system. Simple expressions for the amplitude and the period of the rectangular distribution are derived from the matching of the first-order contributions of the two solutions. These results could be employed to further tailoring the properties of nonlinear seismic metamaterials for engineering applications.
引用
收藏
页数:3
相关论文
共 50 条
  • [11] Mass-spring systems on the GPU
    Georgii, J
    Westermann, R
    SIMULATION MODELLING PRACTICE AND THEORY, 2005, 13 (08) : 693 - 702
  • [12] Nonlinearity effects on thermal transport properties of a mass-spring chain
    Akbari Chaleshtori, Taghi
    Rabani, Hassan
    Mardaani, Mohammad
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [13] Nonlinear waves in mass-spring systems with velocity-dependent friction
    Hirayama, O
    Ohtsuka, K
    Ishiwata, S
    Watanabe, S
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 185 (02) : 97 - 116
  • [14] Transition Waves in One-Dimensional Periodic Bistable Mass-Spring Chains
    Chen, Lin
    Xu, Ao
    Lou, Jia
    Wu, Huaping
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2022, 22 (09)
  • [15] DYNAMICS OF NONLINEAR MASS-SPRING CHAINS NEAR THE CONTINUUM-LIMIT
    ROSENAU, P
    PHYSICS LETTERS A, 1986, 118 (05) : 222 - 227
  • [16] CHAOTIC SEISMIC FAULTING WITH A MASS-SPRING MODEL AND VELOCITY-WEAKENING FRICTION
    HUANG, J
    TURCOTTE, DL
    PURE AND APPLIED GEOPHYSICS, 1992, 138 (04) : 569 - 589
  • [17] Role of disorder in determining the vibrational properties of mass-spring networks
    Yunhuan Nie
    Hua Tong
    Jun Liu
    Mengjie Zu
    Ning Xu
    Frontiers of Physics, 2017, 12
  • [18] Role of disorder in determining the vibrational properties of mass-spring networks
    Nie, Yunhuan
    Tong, Hua
    Liu, Jun
    Zu, Mengjie
    Xu, Ning
    FRONTIERS OF PHYSICS, 2017, 12 (03)
  • [19] Morphological Properties of Mass-Spring Networks for Optimal Locomotion Learning
    Urbain, Gabriel
    Degrave, Jonas
    Carette, Benonie
    Dambre, Joni
    Wyffels, Francis
    FRONTIERS IN NEUROROBOTICS, 2017, 11 : 1 - 13
  • [20] IS THE MASS-SPRING MODEL A TESTABLE HYPOTHESIS
    NICHOLS, TR
    JOURNAL OF MOTOR BEHAVIOR, 1985, 17 (04) : 499 - 500