Dynamical Properties of a Periodic Mass-Spring Nonlinear Seismic Metamaterial

被引:3
|
作者
Zivieri, R. [1 ,2 ]
机构
[1] Univ Messina, Phys Sci & Earth Sci, Dept Math & Comp Sci, Messina, Italy
[2] Ist Nazl Alta Matemat INdAM, Rome, Italy
关键词
D O I
10.1109/metamaterials49557.2020.9285057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nonlinear seismic metamaterials are a challenging class of acoustic metamaterials that are receiving growing attention. Here, it is shown that, in the presence of third-order forces, in a periodic arrangement of an anharmonic mass-spring system, the rectangular bipolar pulse distribution, ansatz solution of the equation of motion, can be projected onto the exact solution. This latter is derived casting the equation of motion in the form of a cubic Duffing differential equation and describes the wave propagating inside the system. Simple expressions for the amplitude and the period of the rectangular distribution are derived from the matching of the first-order contributions of the two solutions. These results could be employed to further tailoring the properties of nonlinear seismic metamaterials for engineering applications.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Nonlinear dispersion relation in anharmonic periodic mass-spring and mass-in-mass systems
    Zivieri, R.
    Garesci, F.
    Azzerboni, B.
    Chiappini, M.
    Finocchio, G.
    JOURNAL OF SOUND AND VIBRATION, 2019, 462
  • [2] Periodic motion of a mass-spring system
    Shearer, Michael
    Gremaud, Pierre
    Kleiner, Kristoph
    IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (06) : 807 - 826
  • [3] Modal interaction and higher harmonic generation in a weakly nonlinear, periodic mass-spring chain
    Frandsen, Niels M. M.
    Jensen, Jakob S.
    WAVE MOTION, 2017, 68 : 149 - 161
  • [4] NONLINEAR RESPONSE OF THE MASS-SPRING MODEL WITH NONSMOOTH STIFFNESS
    Litak, Grzegorz
    Seoane, Jesus M.
    Zambrano, Samuel
    Sanjuan, Miguel A. F.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (01):
  • [5] Fractal classifications of trajectories in a nonlinear mass-spring system
    McDonald, John
    COMPUTERS & GRAPHICS-UK, 2006, 30 (05): : 815 - 833
  • [6] Dynamical analysis of mass-spring models using Lie algebraic methods
    Urzua, Alejandro R.
    Ramos-Prieto, Iran
    Soto-Eguibar, Francisco
    Moya-Cessa, Hector
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
  • [7] Autoparametric amplification of two nonlinear coupled mass-spring systems
    Khirallah, Kareem
    NONLINEAR DYNAMICS, 2018, 92 (02) : 463 - 477
  • [8] PERIODIC AND CHAOTIC MOTIONS OF A MASS-SPRING SYSTEM UNDER HARMONIC FORCE
    BAPAT, CN
    SANKAR, S
    JOURNAL OF SOUND AND VIBRATION, 1986, 108 (03) : 533 - 536
  • [9] An Efficient Nonlinear Mass-Spring Model for Anatomical Virtual Reality
    Xu, Wen
    Wang, Yong
    Huang, Weimin
    Duan, Yuping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [10] Application of mass-spring model in seismic analysis of liquid storage tank
    Liu, Jia-Yi
    Bai, Xin-Ran
    Li, Xiao-Xuan
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2013, 47 (06): : 947 - 951