Long-range coupling and scalable architecture for superconducting flux qubits

被引:29
|
作者
Fowler, Austin G. [1 ]
Thompson, William F.
Yan, Zhizhong
Stephens, Ashley M.
Plourde, B. L. T.
Wilhelm, Frank K.
机构
[1] Univ Waterloo, Inst Quantum Computing, Waterloo, ON N2L 3G1, Canada
[2] Univ Melbourne, Ctr Quantum Com Technol, Parkville, Vic 3010, Australia
[3] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
来源
PHYSICAL REVIEW B | 2007年 / 76卷 / 17期
关键词
D O I
10.1103/PhysRevB.76.174507
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Constructing a fault-tolerant quantum computer is a daunting task. Given any design, it is possible to determine the maximum error rate of each type of component that can be tolerated while still permitting arbitrarily large-scale quantum computation. It is an underappreciated fact that including an appropriately designed mechanism enabling long-range qubit coupling or transport substantially increases the maximum tolerable error rates of all components. With this thought in mind, we take the superconducting flux qubit coupling mechanism described by Plourde [Phys. Rev. B 70, 140501(R) (2004)] and extend it to allow approximately 500 MHz coupling of square flux qubits, 50 mu m a side, at a distance of up to several millimeters. This mechanism is then used as the basis of two scalable architectures for flux qubits taking into account cross-talk and fault-tolerant considerations such as permitting a universal set of logical gates, parallelism, measurement and initialization, and data mobility.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Controllably Coupling Superconducting Charge and Flux Qubits by Using Nanomechanical Resonator
    郭羊青
    姜年权
    Chinese Physics Letters, 2017, 34 (05) : 16 - 19
  • [22] Controllably Coupling Superconducting Charge and Flux Qubits by Using Nanomechanical Resonator
    郭羊青
    姜年权
    Chinese Physics Letters, 2017, (05) : 16 - 19
  • [23] Controllably Coupling Superconducting Charge and Flux Qubits by Using Nanomechanical Resonator
    Guo, Yang-Qing
    Jiang, Nian-Quan
    CHINESE PHYSICS LETTERS, 2017, 34 (05)
  • [24] Coupling Nitrogen-Vacancy Centers in Diamond to Superconducting Flux Qubits
    Marcos, D.
    Wubs, M.
    Taylor, J. M.
    Aguado, R.
    Lukin, M. D.
    Sorensen, A. S.
    PHYSICAL REVIEW LETTERS, 2010, 105 (21)
  • [25] A perspective on superconducting flux qubits
    Dmitriev, A. Yu
    Astafiev, O., V
    APPLIED PHYSICS LETTERS, 2021, 119 (08)
  • [26] Creation of entanglement in a scalable spin quantum computer with long-range dipole-dipole interaction between qubits
    Kamenev, D. I.
    Berman, G. P.
    Tsifrinovich, V. I.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [27] DEVELOPING A LONG-RANGE INFORMATION ARCHITECTURE
    WETHERBE, JC
    DAVIS, GB
    AFIPS CONFERENCE PROCEEDINGS, 1983, 52 : 261 - &
  • [28] Tunable Coupling Architecture for Fixed-Frequency Transmon Superconducting Qubits
    Stehlik, J.
    Zajac, D. M.
    Underwood, D. L.
    Phung, T.
    Blair, J.
    Carnevale, S.
    Klaus, D.
    Keefe, G. A.
    Carniol, A.
    Kumph, M.
    Steffen, Matthias
    Dial, O. E.
    PHYSICAL REVIEW LETTERS, 2021, 127 (08)
  • [29] Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides
    G. M. De Luca
    G. Ghiringhelli
    C. A. Perroni
    V. Cataudella
    F. Chiarella
    C. Cantoni
    A. R. Lupini
    N. B. Brookes
    M. Huijben
    G. Koster
    G. Rijnders
    M. Salluzzo
    Nature Communications, 5
  • [30] Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides
    De Luca, G. M.
    Ghiringhelli, G.
    Perroni, C. A.
    Cataudella, V.
    Chiarella, F.
    Cantoni, C.
    Lupini, A. R.
    Brookes, N. B.
    Huijben, M.
    Koster, G.
    Rijnders, G.
    Salluzzo, M.
    NATURE COMMUNICATIONS, 2014, 5