Long-range coupling and scalable architecture for superconducting flux qubits

被引:29
|
作者
Fowler, Austin G. [1 ]
Thompson, William F.
Yan, Zhizhong
Stephens, Ashley M.
Plourde, B. L. T.
Wilhelm, Frank K.
机构
[1] Univ Waterloo, Inst Quantum Computing, Waterloo, ON N2L 3G1, Canada
[2] Univ Melbourne, Ctr Quantum Com Technol, Parkville, Vic 3010, Australia
[3] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
来源
PHYSICAL REVIEW B | 2007年 / 76卷 / 17期
关键词
D O I
10.1103/PhysRevB.76.174507
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Constructing a fault-tolerant quantum computer is a daunting task. Given any design, it is possible to determine the maximum error rate of each type of component that can be tolerated while still permitting arbitrarily large-scale quantum computation. It is an underappreciated fact that including an appropriately designed mechanism enabling long-range qubit coupling or transport substantially increases the maximum tolerable error rates of all components. With this thought in mind, we take the superconducting flux qubit coupling mechanism described by Plourde [Phys. Rev. B 70, 140501(R) (2004)] and extend it to allow approximately 500 MHz coupling of square flux qubits, 50 mu m a side, at a distance of up to several millimeters. This mechanism is then used as the basis of two scalable architectures for flux qubits taking into account cross-talk and fault-tolerant considerations such as permitting a universal set of logical gates, parallelism, measurement and initialization, and data mobility.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Long-range coupling and scalable architecture for superconducting flux qubits
    Fowler, Austin G.
    Thompson, William F.
    Yan, Zhizhong
    Stephens, Ashley M.
    Plourde, B. L. T.
    Wilhelm, Frank K.
    CANADIAN JOURNAL OF PHYSICS, 2008, 86 (04) : 533 - 540
  • [2] Long range and selective coupler for superconducting flux qubits
    Nakano, Hayato
    Kakuyanagi, Kosuke
    Ueda, Masahito
    Semba, Kouichi
    APPLIED PHYSICS LETTERS, 2007, 91 (03)
  • [3] Ultrastrong coupling in a scalable design for circuit QED with superconducting flux qubits
    Mun Dae Kim
    Quantum Information Processing, 2015, 14 : 3677 - 3691
  • [4] Ultrastrong coupling in a scalable design for circuit QED with superconducting flux qubits
    Kim, Mun Dae
    QUANTUM INFORMATION PROCESSING, 2015, 14 (10) : 3677 - 3691
  • [5] Simulating long-range hopping with periodically driven superconducting qubits
    Roses, Mor M.
    Landa, Haggai
    Dalla Torre, Emanuele G.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [6] Controllable coupling of superconducting flux qubits
    van der Ploeg, S. H. W.
    Izmalkov, A.
    van den Brink, Alec Maassen
    Huebner, U.
    Grajcar, M.
    Il'ichev, E.
    Meyer, H. -G.
    Zagoskin, A. M.
    PHYSICAL REVIEW LETTERS, 2007, 98 (05)
  • [7] Quantum logic operations and creation of entanglement in a scalable superconducting quantum computer with long-range constant interaction between qubits
    Berman, GP
    Bishop, AR
    Kamenev, DI
    Trombettoni, A
    PHYSICAL REVIEW B, 2005, 71 (01)
  • [8] Galvanic Phase Coupling of Superconducting Flux Qubits
    Kim, Mun-Dae
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [9] Scalable architecture for quantum information processing with superconducting flux qubits based on purely longitudinal interactions
    Billangeon, P. -M.
    Tsai, J. S.
    Nakamura, Y.
    PHYSICAL REVIEW B, 2015, 92 (02):
  • [10] Photon-mediated long-range coupling of two Andreev pair qubits
    Cheung, L. Y.
    Haller, R.
    Kononov, A.
    Ciaccia, C.
    Ungerer, J. H.
    Kanne, T.
    Nygard, J.
    Winkel, P.
    Reisinger, T.
    Pop, I. M.
    Baumgartner, A.
    Schoenenberger, C.
    NATURE PHYSICS, 2024, 20 (11) : 1793 - 1797