Discrete Coulomb Friction Problem: Solutions Stability

被引:0
|
作者
Janovsky, Vladimir [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
关键词
Coulomb friction; stability; non-smooth continuation methods;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A discrete contact problem with static Coulomb friction is considered. It is known that the problem may not have a unique solution. The aim is to investigate the solutions stability. To this end, we explore continuation (path-following) techniques for the numerical solution. In bioengineering, the application can wise in mathematical models of artificial joints.
引用
收藏
页码:747 / 750
页数:4
相关论文
共 50 条
  • [31] Stability of controlled mechanical systems with ideal Coulomb friction
    Jeon, Soo
    Tomizuka, Masayoshi
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2008, 130 (01): : 0110131 - 0110139
  • [32] ONE-DIMENSIONAL COULOMB PROBLEM - DISCRETE SPECTRUM
    GOSTEV, VB
    GOSTEV, IV
    FRENKIN, AR
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1987, 28 (05): : 77 - 79
  • [33] POLYNOMIAL SOLUTIONS OF THE PLANAR COULOMB DIAMAGNETIC PROBLEM
    CHHAJLANY, SC
    MALNEV, VN
    PHYSICAL REVIEW A, 1991, 43 (01): : 582 - 584
  • [34] Analytic solutions to the problem of Coulomb and confining potentials
    Dineykhan, M
    Nazmitdinov, RG
    PHYSICS OF ATOMIC NUCLEI, 1999, 62 (01) : 138 - 149
  • [35] Coulomb interactions and the problem of stability of inorganic nanotubes
    Enyashin, AN
    Makurin, YN
    Ivanovskii, AL
    DOKLADY PHYSICAL CHEMISTRY, 2004, 399 : 293 - 297
  • [36] Coulomb interactions and the problem of stability of inorganic nanotubes
    Enyashin A.N.
    Makurin Y.N.
    Ivanovskii A.L.
    Doklady Physical Chemistry, 2004, 399 (4-6) : 293 - 297
  • [37] Coulomb interactions and the problem of stability of inorganic nanotubes
    A. N. Enyashin
    Yu. N. Makurin
    A. L. Ivanovskii
    Doklady Physical Chemistry, 2004, 399 (4) : 293 - 297
  • [38] Local uniqueness results for the discrete friction problem
    Laboratoire de Mathématiques de Besanccon, CNRS UMR 6623, Université de Franche-Comté, 16 route de Gray, Besanccon, 25030, France
    不详
    Lect. Notes Appl. Comput. Mech., 2006, (129-136):
  • [39] Existence results for the semicoercive static contact problem with Coulomb friction
    Eck, C
    Jarusek, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (06) : 961 - 976
  • [40] Analytical solution of the problem for a set of shear fractures with Coulomb friction
    Yu. L. Rebetskii
    A. S. Lermontova
    Doklady Earth Sciences, 2010, 435 : 1698 - 1702