A method for enumerating pairwise compatibility graphs with a given number of vertices

被引:3
|
作者
Azam, Naveed Ahmed [1 ]
Shurbevski, Aleksandar [1 ]
Nagamochi, Hiroshi [1 ]
机构
[1] Kyoto Univ, Dept Appl Math & Phys, Kyoto, Japan
关键词
Pairwise compatibility graph; Linear programming; Gale's theorem; Branch-and-bound algorithm; Graph isomorphism;
D O I
10.1016/j.dam.2020.08.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Azam et al. (2018) proposed a method to enumerate all pairwise compatibility graphs (PCGs) with a given number n of vertices. For a tuple (G, T, sigma, lambda) of a graph G with n vertices and a tree T with n leaves, a bijection sigma between the vertices in G and the leaves in T, and a bi-partition lambda of the set of non-adjacent vertex pairs in G, they formulated two linear programs, LP(G, T, sigma, lambda) and DLP(G, T, sigma, lambda) such that: exactly one of them is feasible; and G is a PCG if and only if LP(G, T, sigma, lambda) is feasible for some tuple (G, T, sigma, lambda). To reduce the number of graphs G with n vertices (resp., tuples) for which the LPs are solved, they excluded PCGs by heuristically generating PCGs (resp., some tuples that contain a sub-tuple (G', T', sigma', lambda') for n = 4 whose LP(G', T', sigma', lambda') is infeasible). This paper proposes two improvements in the method: derive a sufficient condition for a graph to be a PCG for a given tree in order to exclude more PCGs; and characterize all sub-tuples (G', T', sigma', lambda') for n = 4 for which LP(G', T', sigma', lambda') is infeasible, and enumerate tuples that contain no such sub-tuples by a branch-and-bound algorithm. Experimental results show that our method more efficiently enumerated all PCGs for n = 8. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 50 条
  • [31] Extremal Wiener Index of Graphs with Given Number of Vertices of Odd Degree
    Su, Zhenhua
    Tang, Zikai
    Deng, Hanyuan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2023, 89 (02) : 503 - 516
  • [32] The Signless Laplacian Spectral Radius of Graphs with Given Number of Pendant Vertices
    Fan, Yi-Zheng
    Yang, Dan
    GRAPHS AND COMBINATORICS, 2009, 25 (03) : 291 - 298
  • [33] DISCOVERING PAIRWISE COMPATIBILITY GRAPHS
    Yanhaona, Muhammad Nur
    Bayzid, Md. Shamsuzzoha
    Rahman, Md. Saidur
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2010, 2 (04) : 607 - 623
  • [34] On Generalizations of Pairwise Compatibility Graphs
    Calamoneri, Tiziana
    Lafond, Manuel
    Monti, Angelo
    Sinaimeri, Blerina
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2024, 26 (03):
  • [35] Exploring pairwise compatibility graphs
    Calamoneri, T.
    Montefusco, E.
    Petreschi, R.
    Sinaimeri, B.
    THEORETICAL COMPUTER SCIENCE, 2013, 468 : 23 - 36
  • [36] Pairwise Compatibility Graphs Revisited
    Mehnaz, Shagufta
    Rahman, Md. Sohel
    2013 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2013,
  • [37] Discovering Pairwise Compatibility Graphs
    Yanhaona, Muhammad Nur
    Bayzid, Md. Shamsuzzoha
    Rahman, Md. Saidur
    COMPUTING AND COMBINATORICS, 2010, 6196 : 399 - 408
  • [38] Pairwise Compatibility Graphs: A Survey
    Calamoneri, Tiziana
    Sinaimeri, Blerina
    SIAM REVIEW, 2016, 58 (03) : 445 - 460
  • [39] Pairwise Compatibility Graphs of Caterpillars
    Calamoneri, Tiziana
    Frangioni, Antonio
    Sinaimeri, Blerina
    COMPUTER JOURNAL, 2014, 57 (11): : 1616 - 1623
  • [40] A survey on pairwise compatibility graphs
    Rahman, Md. Saidur
    Ahmed, Shareef
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 788 - 795