Boundary value problems for holomorphic functions on the upper half-plane

被引:0
|
作者
Cerne, Miran [1 ]
Flores, Manuel [2 ]
机构
[1] Univ Ljubljana, Dept Math, Ljubljana 1111, Slovenia
[2] Univ La Laguna, Dept Math, Tenerife 38771, Spain
关键词
boundary value problem; Riemann-Hilbert problem;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Pi subset of C be the open upper half-plane and let {gamma(z)}(z is an element of partial derivative Pi) be a smooth family of smooth Jordan curves in the complex plane C parametrized by the boundary of H. Then there exists a smooth up to the boundary holomorphic function f on Pi such that f(z) is an element of gamma(z) for every z is an element of partial derivative Pi. Similar result is also proved on an arbitrary bordered Riemann surface.
引用
收藏
页码:609 / 620
页数:12
相关论文
共 50 条
  • [31] DISTRIBUTIONAL BOUNDARY VALUES OF FUNCTIONS HOLOMORPHIC IN A HALF PLANE
    BELTRAMI, EJ
    WOHLERS, MR
    [J]. JOURNAL OF MATHEMATICS AND MECHANICS, 1966, 15 (01): : 137 - &
  • [32] PALEY-WIENER TYPE THEOREMS FOR FUNCTIONS HOLOMORPHIC IN A HALF-PLANE
    GENCHEV, TG
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1984, 37 (02): : 141 - 144
  • [33] LOCAL VALUE DISTRIBUTION OF FUNCTIONS BOUNDED IN A HALF-PLANE
    HAYMAN, WK
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01): : 227 - 234
  • [34] Explicit solutions of the boundary value problems of the theory of consolidation with double porosity for the half-plane
    Basheleishvili, Mikheil
    Bitsadze, Lamara
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2012, 19 (01) : 41 - 48
  • [35] BOUNDARY-VALUE PROBLEMS FOR AN ELASTIC ANISOTROPIC HALF-PLANE WEAKENED BY A CIRCULAR HOLE
    AMENZADE, IA
    AKHUNDOV, MB
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1976, 40 (04): : 706 - 711
  • [36] THE ALGEBRAISTS UPPER HALF-PLANE
    GOSS, D
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 2 (03) : 391 - 415
  • [37] Differential Subordination Results for Analytic Functions in the Upper Half-Plane
    Tang, Huo
    Aouf, M. K.
    Deng, Guan-Tie
    Li, Shu-Hai
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [38] Twisted spherical functions on the finite Poincare upper half-plane
    Soto-Andrade, J
    Vargas, J
    [J]. JOURNAL OF ALGEBRA, 2002, 248 (02) : 724 - 746
  • [39] Uniqueness theorems for weighted harmonic functions in the upper half-plane
    Olofsson, Anders
    Wittsten, Jens
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2024, 152 (01): : 317 - 359
  • [40] THE MEROMORPHIC FUNCTIONS OF COMPLETELY REGULAR GROWTH ON THE UPPER HALF-PLANE
    Malyutin, K. G.
    Kabanko, M., V
    [J]. VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2020, 30 (03): : 396 - 409