Boundary value problems for holomorphic functions on the upper half-plane

被引:0
|
作者
Cerne, Miran [1 ]
Flores, Manuel [2 ]
机构
[1] Univ Ljubljana, Dept Math, Ljubljana 1111, Slovenia
[2] Univ La Laguna, Dept Math, Tenerife 38771, Spain
关键词
boundary value problem; Riemann-Hilbert problem;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Pi subset of C be the open upper half-plane and let {gamma(z)}(z is an element of partial derivative Pi) be a smooth family of smooth Jordan curves in the complex plane C parametrized by the boundary of H. Then there exists a smooth up to the boundary holomorphic function f on Pi such that f(z) is an element of gamma(z) for every z is an element of partial derivative Pi. Similar result is also proved on an arbitrary bordered Riemann surface.
引用
收藏
页码:609 / 620
页数:12
相关论文
共 50 条