Analyzing protein data with the generative topographic mapping approach

被引:0
|
作者
Grimmenstein, IM [1 ]
Urfer, W [1 ]
机构
[1] Univ Dortmund, Fachbereich Stat, D-44221 Dortmund, Germany
关键词
D O I
10.1007/3-540-26981-9_67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Generative Topographic Mapping (GTM) approach by Bishop et al. (1998) is used for the classification of sequences from a protein family and the graphical display of the group relationships on a two-dimensional map. The results are compared with the closely related Self-Organizing Map (SOM) approach of Kohonen (1982). A modification of the classical GTM approach is presented, better suited for the analysis of sequence data.
引用
收藏
页码:585 / 592
页数:8
相关论文
共 50 条
  • [1] Analyzing microarray data with the Generative Topographic Mapping approach
    Grimmenstein, IM
    Quast, K
    Urfer, W
    [J]. Classification - the Ubiquitous Challenge, 2005, : 338 - 345
  • [2] Parallel Generative Topographic Mapping: an Efficient Approach for Big Data Handling
    Lin, Arkadii
    Baskin, Igor I.
    Marcou, Gilles
    Horvath, Dragos
    Beck, Bernd
    Varnek, Alexandre
    [J]. MOLECULAR INFORMATICS, 2020, 39 (12)
  • [3] Generative Topographic Mapping Approach to Chemical Space Analysis
    Gaspar, Helena A.
    Sidorov, Pavel
    Horvath, Dragos
    Baskin, Igor I.
    Marcou, Gilles
    Varnek, Alexandre
    [J]. FRONTIERS IN MOLECULAR DESIGN AND CHEMIAL INFORMATION SCIENCE - HERMAN SKOLNIK AWARD SYMPOSIUM 2015: JURGEN BAJORATH, 2016, 1222 : 211 - 241
  • [4] Visualizing Dissimilarity Data Using Generative Topographic Mapping
    Gisbrecht, Andrej
    Mokbel, Bassam
    Hasenfuss, Alexander
    Hammer, Barbara
    [J]. KI 2010: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2010, 6359 : 227 - 237
  • [5] A scalable generative topographic mapping for sparse data sequences
    Kabán, A
    [J]. ITCC 2005: International Conference on Information Technology: Coding and Computing, Vol 1, 2005, : 51 - 56
  • [6] Visualizing Regression data by Supervised Generative Topographic Mapping
    Yamaguchi, Nobuhiko
    [J]. 2014 JOINT 7TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 15TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2014, : 1120 - 1125
  • [7] Collaborative Generative Topographic Mapping
    Ghassany, Mohamad
    Grozavu, Nistor
    Bennani, Younes
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 591 - 598
  • [8] Geodesic Generative Topographic Mapping
    Cruz-Barbosa, Raul
    Vellido, Alfredo
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2008, PROCEEDINGS, 2008, 5290 : 113 - 122
  • [9] Relational generative topographic mapping
    Gisbrecht, Andrej
    Mokbel, Bassam
    Hammer, Barbara
    [J]. NEUROCOMPUTING, 2011, 74 (09) : 1359 - 1371
  • [10] GTM: The generative topographic mapping
    Bishop, CM
    Svensen, M
    Williams, CKI
    [J]. NEURAL COMPUTATION, 1998, 10 (01) : 215 - 234