Visualizing Dissimilarity Data Using Generative Topographic Mapping

被引:0
|
作者
Gisbrecht, Andrej [1 ]
Mokbel, Bassam [1 ]
Hasenfuss, Alexander [2 ]
Hammer, Barbara [1 ]
机构
[1] Univ Bielefeld, Cognit Interact Technol Ctr Excellence, Bielefeld, Germany
[2] Tech Univ Clausthal, Ctr Comp, Clausthal Zellerfeld, Germany
关键词
SELF-ORGANIZING MAPS; BATCH;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The generative topographic mapping (GTM) models data by a mixture of Gaussians induced by a low-dimensional lattice of latent points in low dimensional space. Using back-projection, topographic mapping and visualization can be achieved. The original GTM has been proposed for vectorial data only and, thus, cannot directly be used to visualize data given by pairwise dissimilarities only. In this contribution, we consider an extension of GTM to dissimilarity data. The method can be seen as a direct pendant to GTM if the dissimilarity matrix can be embedded in Euclidean space while constituting a model in pseudo-Euclidean space, otherwise. We compare this visualization method to recent alternative visualization tools.
引用
收藏
页码:227 / 237
页数:11
相关论文
共 50 条
  • [1] Visualizing Regression data by Supervised Generative Topographic Mapping
    Yamaguchi, Nobuhiko
    [J]. 2014 JOINT 7TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 15TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2014, : 1120 - 1125
  • [2] Topographic Mapping of Dissimilarity Data
    Hammer, Barbara
    Gisbrecht, Andrej
    Hasenfuss, Alexander
    Mokbel, Bassam
    Schleif, Frank-Michael
    Zhu, Xibin
    [J]. ADVANCES IN SELF-ORGANIZING MAPS, WSOM 2011, 2011, 6731 : 1 - 15
  • [3] Topographic Mapping of Large Dissimilarity Data Sets
    Hammer, Barbara
    Hasenfuss, Alexander
    [J]. NEURAL COMPUTATION, 2010, 22 (09) : 2229 - 2284
  • [4] Exploration of the ecological status of Mediterranean rivers:: clustering, visualizing and reconstructing streams data using Generative Topographic Mapping
    Vicente, D
    Vellido, A
    Martí, E
    Comas, J
    Rodriguez-Roda, I
    [J]. DATA MINING V: DATA MINING, TEXT MINING AND THEIR BUSINESS APPLICATIONS, 2004, 10 : 121 - 130
  • [5] Linear Time Heuristics for Topographic Mapping of Dissimilarity Data
    Gisbrecht, Andrej
    Schleif, Frank-Michael
    Zhu, Xibin
    Hammer, Barbara
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2011, 2011, 6936 : 25 - 33
  • [6] Voice morphing using the generative topographic mapping
    Orphanidou, C
    Moroz, IM
    Roberts, SJ
    [J]. CCCT 2003, VOL 1, PROCEEDINGS: COMPUTING/INFORMATION SYSTEMS AND TECHNOLOGIES, 2003, : 222 - 225
  • [7] Diversify Libraries Using Generative Topographic Mapping
    Lin, Arkadii
    Beck, Bernd
    Horvath, Dragos
    Varnek, Alexandre
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 839 - 841
  • [8] Analyzing protein data with the generative topographic mapping approach
    Grimmenstein, IM
    Urfer, W
    [J]. INNOVATIONS IN CLASSIFICATION, DATA SCIENCE, AND INFORMATION SYSTEMS, 2005, : 585 - 592
  • [9] Analyzing microarray data with the Generative Topographic Mapping approach
    Grimmenstein, IM
    Quast, K
    Urfer, W
    [J]. Classification - the Ubiquitous Challenge, 2005, : 338 - 345
  • [10] A scalable generative topographic mapping for sparse data sequences
    Kabán, A
    [J]. ITCC 2005: International Conference on Information Technology: Coding and Computing, Vol 1, 2005, : 51 - 56