DIVERGENCE-FREE WAVELET PROJECTION METHOD FOR INCOMPRESSIBLE VISCOUS FLOW ON THE SQUARE

被引:0
|
作者
Harouna, Souleymane Kadri [1 ]
Perrier, Valerie [2 ]
机构
[1] Univ La Rochelle, Image & Applicat MIA, Math Lab, F-17042 La Rochelle, France
[2] Univ Grenoble Alpes, CNRS, Lab Jean Kunztmann, UMR 5224, F-38041 Grenoble 9, France
来源
MULTISCALE MODELING & SIMULATION | 2015年 / 13卷 / 01期
关键词
divergence-free wavelets; Navier-Stokes simulation; projection method; Dirichlet boundary condition; NAVIER-STOKES EQUATIONS; FRACTIONAL-STEP METHOD; CURL-FREE WAVELETS; CONVERGENCE; TURBULENCE; INTERVAL; BASES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a wavelet numerical scheme for the discretization of two-dimensional Navier-Stokes equations with Dirichlet boundary condition on the square. This work is an extension to nonperiodic boundary conditions of the previous method of Deriaz and Perrier [E. Deriaz and V. Perrier, Multiscale Model. Simul., 7 (2008), pp. 1101-1129]. Here the temporal discretization is borrowed from the projection method. The projection operator is defined through a discrete Helmholtz-Hodge decomposition using divergence-free wavelet bases; this prevents the use of a Poisson solver as in usual methods, while improving the accuracy of the boundary condition. The stability and precision order of the new method are stated in the linear case of Stokes equations, confirmed by numerical experiments. Finally, the effectiveness, stability, and accuracy of the method are validated by simulations conducted on the benchmark problem of lid-driven cavity flow at Reynolds number Re = 1000 and Re = 10000.
引用
收藏
页码:399 / 422
页数:24
相关论文
共 50 条
  • [21] A projection method for incompressible viscous flow on moving quadrilateral grids
    Trebotich, DP
    Colella, P
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 166 (02) : 191 - 217
  • [22] Robust 4D Flow Denoising Using Divergence-Free Wavelet Transform
    Ong, Frank
    Uecker, Martin
    Tariq, Umar
    Hsiao, Albert
    Alley, Marcus T.
    Vasanawala, Shreyas S.
    Lustig, Michael
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (02) : 828 - 842
  • [23] Divergence-free turbulence inflow conditions for large-eddy simulations with incompressible flow solvers
    Kim, Yusik
    Castro, Ian P.
    Xie, Zheng-Tong
    [J]. COMPUTERS & FLUIDS, 2013, 84 : 56 - 68
  • [24] MLS pressure boundaries for divergence-free and viscous SPH fluids
    Band, Stefan
    Gissler, Christoph
    Peer, Andreas
    Teschner, Matthias
    [J]. COMPUTERS & GRAPHICS-UK, 2018, 76 : 37 - 46
  • [25] Divergence-free meshless local Petrov–Galerkin method for Stokes flow
    Mahboubeh Najafi
    Mehdi Dehghan
    Božidar Šarler
    Gregor Kosec
    Boštjan Mavrič
    [J]. Engineering with Computers, 2022, 38 : 5359 - 5377
  • [26] A PROJECTION OPERATOR FOR THE RESTORATION OF DIVERGENCE-FREE VECTOR-FIELDS
    SIMARD, PY
    MAILLOUX, GE
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (02) : 248 - 256
  • [27] Divergence-free tangential finite element methods for incompressible flows on surfaces
    Lederer, Philip L.
    Lehrenfeld, Christoph
    Schoeberl, Joachim
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (11) : 2503 - 2533
  • [28] Divergence-Free Fitting-Based Incompressible Deformation Quantification of Liver
    Fu, Tianyu
    Fan, Jingfan
    Liu, Dingkun
    Song, Hong
    Zhang, Chaoyi
    Ai, Danni
    Cheng, Zhigang
    Liang, Ping
    Yang, Jian
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (03) : 720 - 736
  • [29] Divergence-free meshless local Petrov-Galerkin method for Stokes flow
    Najafi, Mahboubeh
    Dehghan, Mehdi
    Sarler, Bozidar
    Kosec, Gregor
    Mavric, Bostjan
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (06) : 5359 - 5377
  • [30] A divergence-free method of collocations and least squares for the computation of incompressible fluid flows and its efficient implementation
    Vorozhtsov, E. V.
    Shapeev, V. P.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2020, 24 (03): : 542 - 573