On variations of P4-sparse graphs

被引:18
|
作者
Brandstädt, A [1 ]
Mosca, R [1 ]
机构
[1] Univ Rostock, Fachbereich Informat, D-18051 Rostock, Germany
关键词
P-4-sparse graphs; prime graphs; clique-width; linear time algorithms; monadic second-order logic;
D O I
10.1016/S0166-218X(03)00180-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hoang defined the P-4-sparse graphs as the graphs where every set of five vertices induces at most one P-4. These graphs attracted considerable attention in connection with the P-4-structure of graphs and the fact that P-4-sparse graphs have bounded clique-width. Fouquet and Giakoumakis generalized this class to the nicely structured semi-P-4-sparse graphs being the (P-5, co-P-5, co-chair)-free graphs. We give a complete classification with respect to clique-width of all superclasses of P-4-sparse graphs defined by forbidden P-4 extensions by one vertex which are not P-4-sparse, i.e. the P-5, chair, P, C-5 as well as their complements. It turns out that there are exactly two other inclusion-maximal classes defined by three or four forbidden P-4 extensions namely the (P-5, P, co-chair)-free graphs and the (P, co-P, chair, co-chair)-free graphs which also deserve the name semi-P-4-sparse. (C) 2003 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:521 / 532
页数:12
相关论文
共 50 条
  • [31] ON THE P4-STRUCTURE OF PERFECT GRAPHS .4. PARTNER GRAPHS
    HAYWARD, RB
    LENHART, WJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) : 135 - 139
  • [32] Girth of sparse graphs
    Bollobás, B
    Szemerédi, E
    JOURNAL OF GRAPH THEORY, 2002, 39 (03) : 194 - 200
  • [33] Reconfiguration on sparse graphs
    Lokshtanov, Daniel
    Mouawad, Amer E.
    Panolan, Fahad
    Ramanujan, M. S.
    Saurabh, Saket
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2018, 95 : 122 - 131
  • [34] Spanners in sparse graphs
    Dragan, Feodor F.
    Fomin, Fedor V.
    Golovach, Petr A.
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 597 - +
  • [35] SPARSE GRAPHS ARE NOT FLAMMABLE
    Pralat, Pawel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 2157 - 2166
  • [36] SPARSE RAMSEY GRAPHS
    NESETRIL, J
    RODL, V
    COMBINATORICA, 1984, 4 (01) : 71 - 78
  • [37] SPARSE EIGENVECTORS OF GRAPHS
    Teke, Oguzhan
    Vaidyanathan, P. P.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3904 - 3908
  • [38] Sparse universal graphs
    Alon, N
    Asodi, V
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (01) : 1 - 11
  • [39] Spanners in sparse graphs
    Dragan, Feodor F.
    Fomin, Fedor V.
    Golovach, Petr A.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (06) : 1108 - 1119
  • [40] SPARSE BROADCAST GRAPHS
    BERMOND, JC
    HELL, P
    LIESTMAN, AL
    PETERS, JG
    DISCRETE APPLIED MATHEMATICS, 1992, 36 (02) : 97 - 130