AN EFFICIENT ALGORITHM FOR SOLVING ELLIPTIC PROBLEMS ON PERCOLATION CLUSTERS

被引:0
|
作者
Gu, Chenlin [1 ]
机构
[1] PSL Univ, Ecole Normale Super, DMA, Paris, France
来源
ANNALS OF APPLIED PROBABILITY | 2022年 / 32卷 / 04期
关键词
Numerical algorithm; stochastic homogenization; percolation; QUENCHED INVARIANCE-PRINCIPLES; FINITE-ELEMENT METHODS; STOCHASTIC HOMOGENIZATION; LARGE DEVIATIONS; DISCRETE; REGULARITY; EQUATIONS; APPROXIMATION; COEFFICIENTS; CONVERGENCE;
D O I
10.1214/21-AAP1748
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present an efficient algorithm to solve elliptic Dirichlet problems defined on the cluster of supercritical Z(d)-Bernoulli percolation, as a generalization of the iterative method proposed by S. Armstrong, A. Hannukainen, T. Kuusi and J.-C. Mourrat (ESAIM Math. Model. Numer. Anal. (2021) 55 37-55). We also explore the two-scale expansion on the infinite cluster of percolation, and use it to give a rigorous analysis of the algorithm.
引用
收藏
页码:2755 / 2810
页数:56
相关论文
共 50 条