Fabrication of hollow lattice alumina ceramic with good mechanical properties by Digital Light Processing 3D printing technology

被引:45
|
作者
Sun, Lijun [1 ,2 ,3 ]
Dong, Peng [4 ]
Zeng, Yong [1 ,2 ,3 ]
Chen, Jimin [1 ,2 ,3 ]
机构
[1] Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
[2] Beijing Engn Res Ctr 3D Printing Digital Med Hlth, Beijing 100124, Peoples R China
[3] Minist Educ, Key Lab Trans Scale Laser Mfg Technol, Beijing 100124, Peoples R China
[4] Capital Aerosp Machinery Corp, Beijing 100076, Peoples R China
关键词
3D printing; Porous alumina; Hollow structure; Mechanical properties; Thermal insulation properties; THERMAL-CONDUCTIVITY; HIGH-POROSITY; PERFORMANCE; STEREOLITHOGRAPHY; DESIGN; AL2O3; FOAMS;
D O I
10.1016/j.ceramint.2021.06.065
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, two configurations of alumina (Al2O3) ceramics (hollow lattice structure and solid lattice structure) were prepared by DLP 3D printing technology. When sintered at 1600 degrees C for 4 h, dense alumina ceramics with an average grain size of 4.38 +/- 1.26 mu m can be obtained. The Al2O3 ceramics prepared by DLP process have good forming precision and shape. The dimension error can be controlled about 0.2 mm. The compressive strength of solid block is 572 MPa. The maximum compressive strength of solid lattice (2.0 mm in diameter and 45% in porosity) is 9.70 MPa. The maximum compressive strength of hollow lattice (2.0 mm in diameter, 0.3 mm in thickness and 70% in porosity) is 4.30 MPa. The thermal simulation results show that the temperature of the hollow lattice (diameter 1.2 mm, porosity 76%) with 500 degrees C upper surface transferring to the lower surface is only 88.6 degrees C, which is lower than 133 degrees C of the solid lattice. Hollow lattice structure can effectively reduce heat loss and improve energy efficiency. The hollow lattice structure Al2O3 ceramics formed by DLP technology is expected to be used in industrial thermal insulation applications.
引用
收藏
页码:26519 / 26527
页数:9
相关论文
共 50 条
  • [41] Fabrication of Micro-Perforated Panel (MPP) sound absorbers using Digital Light Processing (DLP) 3D printing technology
    Carbajo, J.
    Nam, S. -H.
    Fang, N. X.
    APPLIED ACOUSTICS, 2024, 216
  • [42] Reconfigurable Polymer Networks for Digital Light Processing 3D Printing
    Fang, Zizheng
    Shi, Yunpeng
    Zhang, Yuhua
    Zhao, Qian
    Wu, Jingjun
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (13) : 15584 - 15590
  • [43] Recyclable thermosetting polymers for digital light processing 3D printing
    Chen, Zhiqiang
    Yang, Meng
    Ji, Mengke
    Kuang, Xiao
    Qi, H. Jerry
    Wang, Tiejun
    MATERIALS & DESIGN, 2021, 197
  • [44] THE QUALITY OF SLICING TECHNOLOGIES FOR DIGITAL LIGHT PROCESSING 3D PRINTING
    Kwok, Tsz-Ho
    PROCEEDINGS OF THE ASME 14TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2019, VOL 1, 2019,
  • [45] 3D printing of glass aspheric lens by digital light processing
    Zhu, Dexing
    Zhang, Jian
    Xu, Qiao
    Li, Yaguo
    JOURNAL OF MANUFACTURING PROCESSES, 2024, 116 : 40 - 47
  • [46] The application of synthetic wollastonite in digital light processing 3D printing
    Gineika, Andrius
    Baltakys, Kestutis
    Navaruckiene, Aukse
    Ostrauskaite, Jolita
    Skliutas, Edvinas
    Malinauskas, Mangirdas
    CERAMICS INTERNATIONAL, 2024, 50 (22) : 48106 - 48115
  • [47] Advances in materials and technologies for digital light processing 3D printing
    Nam, Jisoo
    Kim, Miso
    NANO CONVERGENCE, 2024, 11 (01):
  • [48] Digital light processing 3D printing of conductive complex structures
    Mu, Quanyi
    Wang, Lei
    Dunn, Conner K.
    Kuang, Xiao
    Duan, Feng
    Zhang, Zhong
    Qi, H. Jerry
    Wang, Tiejun
    ADDITIVE MANUFACTURING, 2017, 18 : 74 - 83
  • [49] Mechanical properties of porous ceramic scaffolds made by 3D printing
    Seitz, H
    Irsen, SH
    Leukers, B
    Rieder, W
    Tille, C
    VIRTUAL MODELING AND RAPID MANUFACTURING: ADVANCED RESEARCH IN VIRTUAL AND RAPID PROTOTYPING, 2005, : 109 - 113
  • [50] A Systematic Study on Digital Light Processing 3D Printing of 0-3 Ceramic Composites for Piezoelectric Metastructures
    Wang, Huiru
    Lai, Qingbo
    Zhang, Dingcong
    Li, Xin
    Hu, Jiayi
    Yuan, Hongyan
    RESEARCH, 2025, 8