Fabrication of hollow lattice alumina ceramic with good mechanical properties by Digital Light Processing 3D printing technology

被引:45
|
作者
Sun, Lijun [1 ,2 ,3 ]
Dong, Peng [4 ]
Zeng, Yong [1 ,2 ,3 ]
Chen, Jimin [1 ,2 ,3 ]
机构
[1] Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
[2] Beijing Engn Res Ctr 3D Printing Digital Med Hlth, Beijing 100124, Peoples R China
[3] Minist Educ, Key Lab Trans Scale Laser Mfg Technol, Beijing 100124, Peoples R China
[4] Capital Aerosp Machinery Corp, Beijing 100076, Peoples R China
关键词
3D printing; Porous alumina; Hollow structure; Mechanical properties; Thermal insulation properties; THERMAL-CONDUCTIVITY; HIGH-POROSITY; PERFORMANCE; STEREOLITHOGRAPHY; DESIGN; AL2O3; FOAMS;
D O I
10.1016/j.ceramint.2021.06.065
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, two configurations of alumina (Al2O3) ceramics (hollow lattice structure and solid lattice structure) were prepared by DLP 3D printing technology. When sintered at 1600 degrees C for 4 h, dense alumina ceramics with an average grain size of 4.38 +/- 1.26 mu m can be obtained. The Al2O3 ceramics prepared by DLP process have good forming precision and shape. The dimension error can be controlled about 0.2 mm. The compressive strength of solid block is 572 MPa. The maximum compressive strength of solid lattice (2.0 mm in diameter and 45% in porosity) is 9.70 MPa. The maximum compressive strength of hollow lattice (2.0 mm in diameter, 0.3 mm in thickness and 70% in porosity) is 4.30 MPa. The thermal simulation results show that the temperature of the hollow lattice (diameter 1.2 mm, porosity 76%) with 500 degrees C upper surface transferring to the lower surface is only 88.6 degrees C, which is lower than 133 degrees C of the solid lattice. Hollow lattice structure can effectively reduce heat loss and improve energy efficiency. The hollow lattice structure Al2O3 ceramics formed by DLP technology is expected to be used in industrial thermal insulation applications.
引用
收藏
页码:26519 / 26527
页数:9
相关论文
共 50 条
  • [1] Fabrication and mechanical properties of triply period minimal surface porous alumina ceramics based on Digital Light Processing 3D printing technology
    Liu, Kai
    Zhang, Zhenji
    Sun, Huajun
    Sun, Ce
    Qiu, Lei
    Shi, Yusheng
    Zhang, Song
    Tu, Rong
    Huang, Shangyu
    Du, Yanying
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023,
  • [2] Fabrication of alumina ceramics with functional gradient structures by digital light processing 3D printing technology
    Zeng, Yong
    Sun, Lijun
    Yao, Haihua
    Chen, Jimin
    CERAMICS INTERNATIONAL, 2022, 48 (08) : 10613 - 10619
  • [3] 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing
    Yong Zeng
    Yinzhou Yan
    Hengfeng Yan
    Chunchun Liu
    Peiran Li
    Peng Dong
    Ying Zhao
    Jimin Chen
    Journal of Materials Science, 2018, 53 : 6291 - 6301
  • [4] 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing
    Zeng, Yong
    Yan, Yinzhou
    Yan, Hengfeng
    Liu, Chunchun
    Li, Peiran
    Dong, Peng
    Zhao, Ying
    Chen, Jimin
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (09) : 6291 - 6301
  • [5] Fabrication of fine and complex lattice structure Al2O3 ceramic by digital light processing 3D printing technology
    Shuai, Xingan
    Zeng, Yong
    Li, Peiran
    Chen, Jimin
    Journal of Materials Science, 2020, 55 (16): : 6771 - 6782
  • [6] Fabrication of fine and complex lattice structure Al2O3 ceramic by digital light processing 3D printing technology
    Shuai, Xingan
    Zeng, Yong
    Li, Peiran
    Chen, Jimin
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (16) : 6771 - 6782
  • [7] Fabrication of fine and complex lattice structure Al2O3 ceramic by digital light processing 3D printing technology
    Xingan Shuai
    Yong Zeng
    Peiran Li
    Jimin Chen
    Journal of Materials Science, 2020, 55 : 6771 - 6782
  • [8] The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology
    Li, Shan
    Duan, Wenyan
    Zhao, Tong
    Han, Weijian
    Wang, Li
    Dou, Rui
    Wang, Gong
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (14) : 4597 - 4603
  • [9] The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology
    Ertugrul, Ishak
    MICROMACHINES, 2020, 11 (05)
  • [10] Preparation of Hollow Lattice Alumina Ceramics by 3D Printing
    Sun L.
    Dong P.
    Zeng Y.
    Chen J.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (09): : 1853 - 1860