IDEALS, NATURAL CLASSES, AND FUNCTORS

被引:0
|
作者
Dauns, John [1 ]
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
关键词
Boolean lattice; Complement closure of a submodule; Complement submodule; Natural class; Rational extension of modules; Second singular submodule; DIRECT SUMS; SUBMODULES; MODULES; LATTICE;
D O I
10.1080/00927871003757535
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any ring R, the set N(R) of all natural classes of R-modules is a complete Boolean lattice, which is a direct sum of two convex and complete Boolean sublattices N(R) = N-t (R) circle plus N-f(R), where the last summand is the set of all nonsingular natural classes. The ring R contains a unique lattice of ideals J(R) which is lattice isomorphic to N-f(R). The present note develops the analogue of all of the above for an arbitrary R-module M, so that in the special case when M-R = R-R, the known lattice isomorphism J(R) congruent to N-f(R) is recovered.
引用
下载
收藏
页码:2240 / 2248
页数:9
相关论文
共 50 条