Particle finite element methods in solid mechanics problems

被引:29
|
作者
Oliver, J. [1 ]
Cante, J. C. [1 ]
Weyler, R. [1 ]
Gonzalez, C. [1 ]
Hernandez, J. [1 ]
机构
[1] Univ Politecn Cataluna, ETS Enginyers Camins, ETS Enginyeria Ind & Aeronaut Terrassa, Canals I Ports Barcelona, Campus Nord UPC,Edifici C-1,C Jordi Girona 1-3, ES-08034 Barcelona, Spain
来源
关键词
D O I
10.1007/978-1-4020-6577-4_6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The paper examines the possibilities of extending the Particle finite element methods (PFEM), which have been successfully applied in fluid mechanics, to solid mechanics problems. After a review of the fundamentals of the method, their specific features in solid mechanics are presented. A methodology to face contact problems, the anticipating contact interface mesh, is presented oil the basis of a penalty-like constitutive models for imposing the contact and friction conditions. Finally, the PFEM is applied to same representative solid mechanics problems to display the capabilities of the method and some final conclusions are obtained.
引用
收藏
页码:87 / +
页数:3
相关论文
共 50 条
  • [21] A new strain-based pentagonal membrane finite element for solid mechanics problems
    Koh, Wei Hao
    Perumal, Logah
    Kok, Chee Kuang
    [J]. THEORETICAL AND APPLIED MECHANICS LETTERS, 2024, 14 (03)
  • [22] A HYBRID SMOOTHED FINITE ELEMENT METHOD (H-SFEM) TO SOLID MECHANICS PROBLEMS
    Xu, Xu
    Gu, Yuantong
    Liu, Guirong
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2013, 10 (01)
  • [23] Edge-based finite element for nonlinear solid mechanics and unsteady transport problems
    Coutinho, ALGA
    Alves, JLD
    Martins, MAD
    de Souza, DAF
    [J]. COMPUTATIONAL BALLISTICS, 2003, : 73 - 81
  • [24] A new strain-based pentagonal membrane finite element for solid mechanics problems
    Wei Hao Koh
    Logah Perumal
    Chee Kuang Kok
    [J]. Theoretical&AppliedMechanicsLetters, 2024, 14 (03) : 211 - 216
  • [25] NURBS based least-squares finite element methods for fluid and solid mechanics
    Kadapa, C.
    Dettmer, W. G.
    Peric, D.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 101 (07) : 521 - 539
  • [26] Mixed stabilized finite element methods in nonlinear solid mechanics Part I: Formulation
    Cervera, M.
    Chiumenti, M.
    Codina, R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (37-40) : 2559 - 2570
  • [27] Parallel computations in nonlinear solid mechanics using adaptive finite element and meshless methods
    Ullah, Zahur
    Coombs, Will
    Augarde, C.
    [J]. ENGINEERING COMPUTATIONS, 2016, 33 (04) : 1161 - 1191
  • [28] Possibilities of the Particle Finite Element Method in Computational Mechanics
    Onate, Eugenio
    Idelsohn, Sergio R.
    Angel Celigueta, Miguel
    Rossi, Riccardo
    Latorre, Salvador
    [J]. COMPUTER METHODS IN MECHANICS, 2010, 1 : 271 - +
  • [29] Applications of boundary element methods to problems in mechanics
    Hsiao, GC
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 265 - 268
  • [30] Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems
    Riviere, Beatrice
    Shaw, Simon
    Whiteman, J. R.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (05) : 1149 - 1166