共 50 条
Bifurcation of nodal radial solutions for a prescribed mean curvature problem on an exterior domain
被引:18
|作者:
Yang, Rui
[1
]
Lee, Yong-Hoon
[1
]
Sim, Inbo
[2
]
机构:
[1] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
[2] Univ Ulsan, Dept Math, Ulsan 44610, South Korea
基金:
新加坡国家研究基金会;
关键词:
Mean curvature;
Exterior domain;
Singular weight;
Global bifurcation;
Nodal radial solutions;
Asymptotic behavior;
DIRICHLET PROBLEM;
SPACELIKE HYPERSURFACES;
POSITIVE SOLUTIONS;
OPERATORS;
NEUMANN;
D O I:
10.1016/j.jde.2019.10.035
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We investigate the existence and multiplicity of nodal radial solutions for a prescribed mean curvature problem on the exterior domain of a ball using the global bifurcation theory. Moreover, we establish the asymptotic behavior of the solutions on the subcontinua, which bifurcate from a trivial branch. All results are obtained by considering a radially equivalent second order problem with a singular weight. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:4464 / 4490
页数:27
相关论文