Bifurcation of nodal radial solutions for a prescribed mean curvature problem on an exterior domain

被引:18
|
作者
Yang, Rui [1 ]
Lee, Yong-Hoon [1 ]
Sim, Inbo [2 ]
机构
[1] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
[2] Univ Ulsan, Dept Math, Ulsan 44610, South Korea
基金
新加坡国家研究基金会;
关键词
Mean curvature; Exterior domain; Singular weight; Global bifurcation; Nodal radial solutions; Asymptotic behavior; DIRICHLET PROBLEM; SPACELIKE HYPERSURFACES; POSITIVE SOLUTIONS; OPERATORS; NEUMANN;
D O I
10.1016/j.jde.2019.10.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the existence and multiplicity of nodal radial solutions for a prescribed mean curvature problem on the exterior domain of a ball using the global bifurcation theory. Moreover, we establish the asymptotic behavior of the solutions on the subcontinua, which bifurcate from a trivial branch. All results are obtained by considering a radially equivalent second order problem with a singular weight. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:4464 / 4490
页数:27
相关论文
共 50 条