Efficient Formulation of Ab Initio Quantum Embedding in Periodic Systems: Dynamical Mean-Field Theory

被引:43
|
作者
Zhu, Tianyu [1 ]
Cui, Zhi-Hao [1 ]
Chan, Garnet Kin-Lic [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY-FUNCTIONAL THEORY; TRANSITION; RENORMALIZATION; FERROMAGNETISM; APPROXIMATION; FERMIONS; ORBITALS; STATE;
D O I
10.1021/acs.jctc.9b00934
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an efficient ab initio dynamical mean-field theory (DMFT) implementation for quantitative simulations in solids. Our DMFT scheme employs ab initio Hamiltonians defined for impurities comprising the full unit cell or a supercell of atoms and for realistic quantum chemical basis sets. We avoid double counting errors by using Hartree-Fock as the low-level theory. Intrinsic and projected atomic orbitals (IAO + PAO) are chosen as the local embedding basis, facilitating numerical bath truncation. Using an efficient integral transformation and coupled-cluster Green's function impurity solvers, we are able to handle embedded impurity problems with several hundred orbitals. We apply our ab initio DMFT approach to study a hexagonal boron nitride monolayer, crystalline silicon, and nickel oxide in the antiferromagnetic phase, with up to 104 and 78 impurity orbitals in the spin-restricted and unrestricted cluster DMFT calculations and over 100 bath orbitals. We show that our scheme produces accurate spectral functions compared to both benchmark periodic coupled-cluster computations and experimental spectra.
引用
收藏
页码:141 / 153
页数:13
相关论文
共 50 条
  • [21] Efficient real-frequency solver for dynamical mean-field theory
    Lu, Y.
    Hoeppner, M.
    Gunnarsson, O.
    Haverkort, M. W.
    PHYSICAL REVIEW B, 2014, 90 (08)
  • [22] Finite-temperature magnetism of transition metals:: An ab initio dynamical mean-field theory -: art. no. 067205
    Lichtenstein, AI
    Katsnelson, MI
    Kotliar, G
    PHYSICAL REVIEW LETTERS, 2001, 87 (06) : 67205 - 1
  • [23] Generalized dynamical mean-field theory in the physics of strongly correlated systems
    Kuchinskii, E. Z.
    Nekrasov, I. A.
    Sadovskii, M. V.
    PHYSICS-USPEKHI, 2012, 55 (04) : 325 - 355
  • [24] Dynamical Mean-Field Theory of Complex Systems on Sparse Directed Networks
    Metz, Fernando L.
    PHYSICAL REVIEW LETTERS, 2025, 134 (03)
  • [25] Spatial correlations in dynamical mean-field theory
    Smith, JL
    Si, QM
    PHYSICAL REVIEW B, 2000, 61 (08) : 5184 - 5193
  • [26] Dynamical Mean-Field Theory of Nickelate Superlattices
    Han, M. J.
    Wang, Xin
    Marianetti, C. A.
    Millis, A. J.
    PHYSICAL REVIEW LETTERS, 2013, 110 (17)
  • [27] Dynamical mean-field theory for molecules and nanostructures
    Turkowski, Volodymyr
    Kabir, Alamgir
    Nayyar, Neha
    Rahman, Talat S.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (11):
  • [28] Dynamical mean-field theory of stripe ordering
    Lichtenstein, AI
    Fleck, M
    Oles, AM
    Hedin, L
    STRIPES AND RELATED PHENOMENA, 2000, : 101 - 109
  • [29] Dynamical mean-field theory of the small polaron
    Ciuchi, S
    dePasquale, F
    Fratini, S
    Feinberg, D
    PHYSICAL REVIEW B, 1997, 56 (08): : 4494 - 4512
  • [30] Dynamical mean-field theory and aging dynamics
    Altieri, Ada
    Biroli, Giulio
    Cammarota, Chiara
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (37)