Efficient Formulation of Ab Initio Quantum Embedding in Periodic Systems: Dynamical Mean-Field Theory

被引:43
|
作者
Zhu, Tianyu [1 ]
Cui, Zhi-Hao [1 ]
Chan, Garnet Kin-Lic [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY-FUNCTIONAL THEORY; TRANSITION; RENORMALIZATION; FERROMAGNETISM; APPROXIMATION; FERMIONS; ORBITALS; STATE;
D O I
10.1021/acs.jctc.9b00934
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an efficient ab initio dynamical mean-field theory (DMFT) implementation for quantitative simulations in solids. Our DMFT scheme employs ab initio Hamiltonians defined for impurities comprising the full unit cell or a supercell of atoms and for realistic quantum chemical basis sets. We avoid double counting errors by using Hartree-Fock as the low-level theory. Intrinsic and projected atomic orbitals (IAO + PAO) are chosen as the local embedding basis, facilitating numerical bath truncation. Using an efficient integral transformation and coupled-cluster Green's function impurity solvers, we are able to handle embedded impurity problems with several hundred orbitals. We apply our ab initio DMFT approach to study a hexagonal boron nitride monolayer, crystalline silicon, and nickel oxide in the antiferromagnetic phase, with up to 104 and 78 impurity orbitals in the spin-restricted and unrestricted cluster DMFT calculations and over 100 bath orbitals. We show that our scheme produces accurate spectral functions compared to both benchmark periodic coupled-cluster computations and experimental spectra.
引用
收藏
页码:141 / 153
页数:13
相关论文
共 50 条
  • [1] Efficient Implementation of Ab Initio Quantum Embedding in Periodic Systems: Density Matrix Embedding Theory
    Cui, Zhi-Hao
    Zhu, Tianyu
    Chan, Garnet Kin-Lic
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (01) : 119 - 129
  • [2] Calculating dynamical mean-field theory forces in ab initio ultrasoft pseudopotential formalism
    Plekhanov, Evgeny
    Bonini, Nicola
    Weber, Cedric
    PHYSICAL REVIEW B, 2021, 104 (23)
  • [3] Dynamical Mean-Field Theory for Quantum Chemistry
    Lin, Nan
    Marianetti, C. A.
    Millis, Andrew J.
    Reichman, David R.
    PHYSICAL REVIEW LETTERS, 2011, 106 (09)
  • [4] Dynamical mean-field theory of quantum stripe glasses
    Westfahl, H
    Schmalian, J
    Wolynes, PG
    PHYSICAL REVIEW B, 2003, 68 (13)
  • [5] Cellular dynamical mean-field theory of the periodic Anderson model
    De Leo, Lorenzo
    Civelli, Marcello
    Kotliar, Gabriel
    PHYSICAL REVIEW B, 2008, 77 (07)
  • [6] Statistical mean-field theory of finite quantum systems: canonical ensemble formulation
    Ponomarenko, S. A.
    Sherrill, M. E.
    Kilcrease, D. P.
    Csanak, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (30): : L499 - L505
  • [7] Embedding dynamical mean-field theory for superconductivity in layered materials and heterostructures
    Petocchi, Francesco
    Capone, Massimo
    PHYSICAL REVIEW B, 2016, 93 (23)
  • [8] Density Matrix Embedding: A Simple Alternative to Dynamical Mean-Field Theory
    Knizia, Gerald
    Chan, Garnet Kin-Lic
    PHYSICAL REVIEW LETTERS, 2012, 109 (18)
  • [9] Embedding approach for dynamical mean-field theory of strongly correlated heterostructures
    Ishida, H.
    Liebsch, A.
    PHYSICAL REVIEW B, 2009, 79 (04)
  • [10] Dynamical mean-field theory for inhomogeneous polymeric systems
    Ganesan, V
    Pryamitsyn, V
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (10): : 4345 - 4348