Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease

被引:136
|
作者
Sissler, Marie [1 ]
Gonzalez-Serrano, Ligia Elena [1 ]
Westhof, Eric [1 ]
机构
[1] Univ Strasbourg, CNRS, Unite Propre Rech 9002, Architecture & Reactivite ARN, F-67084 Strasbourg, France
关键词
SPINAL-CORD INVOLVEMENT; UNFOLDED PROTEIN RESPONSE; LACTATE ELEVATION; BRAIN-STEM; MUTATION; TRANSLATION; DNA; GENE; LEUKOENCEPHALOPATHY; MYOPATHY;
D O I
10.1016/j.molmed.2017.06.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dysfunctions in mitochondria - the powerhouses of the cell - lead to several human pathologies. Because mitochondria integrate nuclear and mitochondrial genetic systems, they are richly intertwined with cellular activities. The nucleus-encoded mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) are key components of the mitochondrial translation apparatus. Mutations in these enzymes predominantly affect the central nervous system (CNS) but also target other organs. Comparable mutations in mt-aaRSs can lead to vastly diverse diseases, occurring at different stages in life, and within different tissues; this represents a confounding issue. With newer information available, we propose that the pleiotropy and tissue-specificity of mt-aaRS-associated diseases result from the molecular integration of mitochondrial translation events within the cell; namely, through specific crosstalk between the cellular program and the energy demands of the cell. We place particular focus on neuronal cells.
引用
收藏
页码:693 / 708
页数:16
相关论文
共 50 条
  • [31] Roles of Aminoacyl-tRNA Synthetases in Cancer
    Zhou, Zheng
    Sun, Bao
    Nie, Anzheng
    Yu, Dongsheng
    Bian, Meng
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [32] Characterization of Aminoacyl-tRNA Synthetases in Chromerids
    Sharaf, Abdoallah
    Gruber, Ansgar
    Jiroutova, Katerina
    Obornik, Miroslav
    GENES, 2019, 10 (08)
  • [33] The aminoacyl-tRNA synthetases of Drosophila melanogaster
    Lu, Jiongming
    Marygold, Steven J.
    Gharib, Walid H.
    Suter, Beat
    FLY, 2015, 9 (02) : 53 - 61
  • [34] Aminoacyl-tRNA synthetases as therapeutic targets
    Nam Hoon Kwon
    Paul L. Fox
    Sunghoon Kim
    Nature Reviews Drug Discovery, 2019, 18 : 629 - 650
  • [35] Evolution of structure in the aminoacyl-tRNA synthetases
    O'Donoghue, PM
    Luthey-Schulten, Z
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U275 - U275
  • [36] Association of Aminoacyl-tRNA Synthetases with Cancer
    Kim, Doyeun
    Kwon, Nam Hoon
    Kim, Sunghoon
    AMINOACYL-TRNA SYNTHETASES IN BIOLOGY AND MEDICINE, 2014, 344 : 207 - 245
  • [37] Noncanonical functions of aminoacyl-tRNA synthetases
    Smirnova, E. V.
    Lakunina, V. A.
    Tarassov, I.
    Krasheninnikov, I. A.
    Kamenski, P. A.
    BIOCHEMISTRY-MOSCOW, 2012, 77 (01) : 15 - 25
  • [38] The early history of tRNA recognition by aminoacyl-tRNA synthetases
    Giege, Richard
    JOURNAL OF BIOSCIENCES, 2006, 31 (04) : 477 - 488
  • [39] The early history of tRNA recognition by aminoacyl-tRNA synthetases
    Richard Giegé
    Journal of Biosciences, 2006, 31 : 477 - 488
  • [40] Mitochondrial aminoacyl-tRNA synthetases trigger unique compensatory mechanisms in neurons
    Podmanicky, Oliver
    Gao, Fei
    Munro, Benjamin
    Jennings, Matthew J.
    Boczonadi, Veronika
    Hathazi, Denisa
    Mueller, Juliane S.
    Horvath, Rita
    HUMAN MOLECULAR GENETICS, 2024, 33 (05) : 435 - 447