Standardization and quality control for high-dimensional mass cytometry studies of human samples

被引:44
|
作者
Kleinsteuber, Katja [1 ,2 ,3 ]
Corleis, Bjoern [1 ]
Rashidi, Narges [1 ]
Nchinda, Nzuekoh [1 ,2 ]
Lisanti, Antonella [1 ]
Cho, Josalyn L. [4 ,5 ,6 ]
Medoff, Benjamin D. [4 ,5 ,6 ]
Kwon, Douglas [1 ,7 ]
Walker, Bruce D. [1 ,2 ,7 ]
机构
[1] MIT & Harvard, Ragon Inst MGH, 400 Technol Sq, Cambridge, MA 02139 USA
[2] Howard Hughes Med Inst HHMI Chevy Chase, Chevy Chase, MD 20815 USA
[3] Heinrich Pette Inst Expt Virol, Hamburg, Germany
[4] Massachusetts Gen Hosp, Div Pulm & Crit Care Med, Boston, MA USA
[5] Harvard Med Sch, Boston, MA USA
[6] Massachusetts Gen Hosp, Ctr Immunol & Inflammatory Dis, Boston, MA USA
[7] Massachusetts Gen Hosp, Div Infect Dis, Boston, MA USA
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
Mass cytometry; CyTOF; HIV; clinical studies; human immunology; SINGLE-CELL TECHNOLOGIES; T-CELLS; EXPRESSION; IMMUNE; PROGRESSION; EXHAUSTION; CONTINUUM; RESPONSES; SYSTEM; KI-67;
D O I
10.1002/cyto.a.22935
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mass cytometry (CyTOF), a mass spectrometry-based single cell phenotyping technology, allows utilization of over 35 antibodies in a single sample and is a promising tool for translational human immunology studies. Although several analysis tools are available to interpret the complex data sets generated, a robust method for standardization and quality control within and across studies is needed. Here we report an efficient and easily adaptable method to monitor quality of individual samples in human immunology studies and to facilitate reproducible data analysis. Samples to be assessed are spiked with a defined amount of reference peripheral blood mononuclear cells from a healthy donor, derived from a single large blood draw. The presence of known standardized numbers and phenotypic profiles of these reference cells greatly facilitates sample analysis by allowing for: 1) quality control for consistent staining of each antibody in the panel, 2) identification of potential batch effects, and 3) implementation of a robust gating strategy. We demonstrate the utility of this method using peripheral blood and bronchoalveolar lavage samples from HIV+ patients by characterizing their CD8(+) T-cell phenotypes and cytokine expression, respectively. Our results indicate that this method allows quality control of experimental conditions and results in highly reproducible population frequencies through a robust gating strategy. (c) 2016 International Society for Advancement of Cytometry
引用
收藏
页码:903 / 913
页数:11
相关论文
共 50 条
  • [31] Ensuring Full Spectrum Flow Cytometry Data Quality for High-Dimensional Data Analysis
    Ferrer-Font, Laura
    Kraker, Geoffrey
    Hally, Kathryn E.
    Price, Kylie M.
    CURRENT PROTOCOLS, 2023, 3 (02):
  • [32] High-Dimensional Single Cell Analysis Mass Cytometry, Multi-parametric Flow Cytometry and Bioinformatic Techniques Preface
    Fienberg, Harris G.
    Nolan, Garry P.
    HIGH-DIMENSIONAL SINGLE CELL ANALYSIS: MASS CYTOMETRY, MULTI-PARAMETRIC FLOW CYTOMETRY AND BIOINFORMATIC TECHNIQUES, 2014, 377 : VII - VIII
  • [33] Statistical quality control analysis of high-dimensional omics data
    Kim, Yongkang
    Kim, Gyu-Tae
    Kwon, Min-Seok
    Park, Taesung
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 18 (03) : 210 - 222
  • [34] Unveiling the power of high-dimensional cytometry data with cyCONDOR
    Kroeger, Charlotte
    Mueller, Sophie
    Leidner, Jacqueline
    Kroeber, Theresa
    Warnat-Herresthal, Stefanie
    Spintge, Jannis Bastian
    Zajac, Timo
    Neubauer, Anna
    Frolov, Aleksej
    Carraro, Caterina
    DELCODE Study Grp, Silka Dawn
    Jessen, Frank
    Puccio, Simone
    Aschenbrenner, Anna C.
    Schultze, Joachim L.
    Pecht, Tal
    Beyer, Marc D.
    Bonaguro, Lorenzo
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [35] Analyzing high-dimensional cytometry data using FlowSOM
    Quintelier, Katrien
    Couckuyt, Artuur
    Emmaneel, Annelies
    Aerts, Joachim
    Saeys, Yvan
    Van Gassen, Sofie
    NATURE PROTOCOLS, 2021, 16 (08) : 3775 - 3801
  • [36] An updated guide for the perplexed: cytometry in the high-dimensional era
    Thomas Liechti
    Lukas M. Weber
    Thomas M. Ashhurst
    Natalie Stanley
    Martin Prlic
    Sofie Van Gassen
    Florian Mair
    Nature Immunology, 2021, 22 : 1190 - 1197
  • [37] Algorithmic Tools for Mining High-Dimensional Cytometry Data
    Chester, Cariad
    Maecker, Holden T.
    JOURNAL OF IMMUNOLOGY, 2015, 195 (03): : 773 - 779
  • [38] Analyzing high-dimensional cytometry data using FlowSOM
    Katrien Quintelier
    Artuur Couckuyt
    Annelies Emmaneel
    Joachim Aerts
    Yvan Saeys
    Sofie Van Gassen
    Nature Protocols, 2021, 16 : 3775 - 3801
  • [39] An updated guide for the perplexed: cytometry in the high-dimensional era
    Liechti, Thomas
    Weber, Lukas M.
    Ashhurst, Thomas M.
    Stanley, Natalie
    Prlic, Martin
    Van Gassen, Sofie
    Mair, Florian
    NATURE IMMUNOLOGY, 2021, 22 (10) : 1190 - 1197
  • [40] Unveiling the power of high-dimensional cytometry data with cyCONDOR
    Kroeger, Charlotte
    Mueller, Sophie
    Leidner, Jacqueline
    Kroeber, Theresa
    Warnat-Herresthal, Stefanie
    Spintge, Jannis B.
    Zajac, Timo
    Frolov, Aleksej
    Carraro, Caterina
    Puccio, Simone
    Schultze, Joachim L.
    Pacht, Tal
    Beyer, Marc
    Bonaguro, Lorenzo
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2024, 54 : 185 - 185