On non-stationary threshold autoregressive models

被引:15
|
作者
Liu, Weidong [1 ]
Ling, Shiqing [1 ]
Shao, Qi-Man [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
explosive TAR(1) model; least-squares estimator; unit root TAR(1) model; LEAST-SQUARES ESTIMATOR; AR(1) MODEL; TIME-SERIES; UNIT-ROOT; CONSISTENCY;
D O I
10.3150/10-BEJ306
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the limiting distributions of the least-squares estimators for the non-stationary first-order threshold autoregressive (TAR(1)) model. It is proved that the limiting behaviors of the TAR(1) process are very different from those of the classical unit root model and the explosive AR(1).
引用
收藏
页码:969 / 986
页数:18
相关论文
共 50 条
  • [41] SELF-ORGANISING MIXTURE AUTOREGRESSIVE MODEL FOR NON-STATIONARY TIME SERIES MODELLING
    Ni, He
    Yin, Hujun
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2008, 18 (06) : 469 - 480
  • [42] Non-Gaussian non-stationary models for natural hazard modeling
    Poirion, Fabrice
    Zentner, Irmela
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (08) : 5938 - 5950
  • [43] A comparative study of stationary and non-stationary wind models using field measurements
    Chen, Jun
    Hui, Michael C. H.
    Xu, Y. L.
    [J]. BOUNDARY-LAYER METEOROLOGY, 2007, 122 (01) : 105 - 121
  • [44] The unique solvability of stationary and non-stationary incompressible melt models in the case of their linearization
    Kazhikenova, Saule Sh
    [J]. ARCHIVES OF CONTROL SCIENCES, 2021, 31 (02) : 307 - 332
  • [45] Integral Models of Non-linear Non-stationary Systems and Their Applications
    Solodusha, S.
    Orlova, I
    [J]. 2017 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING, APPLICATIONS AND MANUFACTURING (ICIEAM), 2017,
  • [46] On the non-stationary Maxwellians
    Gordevskyy, VD
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (02) : 231 - 247
  • [47] Non-stationary cutting
    Berger, BS
    Minis, I
    Harley, J
    Papadopoulos, M
    Rokni, M
    [J]. JOURNAL OF SOUND AND VIBRATION, 1998, 217 (01) : 183 - 190
  • [48] Drying in stationary and non-stationary conditions
    Kowalski, Stefan Jan
    Pawlowski, Andrzej
    [J]. CHEMICAL AND PROCESS ENGINEERING-INZYNIERIA CHEMICZNA I PROCESOWA, 2008, 29 (02): : 337 - 344
  • [49] On inference for threshold autoregressive models
    Osnat Stramer
    Yu-Jau Lin
    [J]. Test, 2002, 11 : 55 - 71
  • [50] STATIONARY AND NON-STATIONARY WIND PROFILE
    ESSENWAN.O
    BILLIONS, NS
    [J]. PURE AND APPLIED GEOPHYSICS, 1965, 60 (01) : 160 - &