Multisensor multitarget tracking methods based on particle filter

被引:0
|
作者
Xiong, W [1 ]
Zhang, JW [1 ]
He, Y [1 ]
机构
[1] Naval Aeronaut Engn Inst, Res Inst Informat Fus, Yantai 264001, Peoples R China
来源
ISADS 2005: INTERNATIONAL SYMPOSIUM ON AUTONOMOUS DECENTRALIZED SYSTEMS,PROCEEDINGS | 2005年
关键词
D O I
10.1109/ISADS.2005.1452073
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to solve the multisensor multitarget tracking problem of the non-Gaussian nonlinear systems, the paper presents a Multisensor Joint Probabilistic Data Association Particle (MJPDAP) algorithm. At first, the algorithm permutes and combines the measurement from each sensor using the rule of generalized S-D assignment algorithm. Then, all of measurements in each assignment are combined into one equivalent measurement and the joint likelihood function of the equivalent measurement is calculated. Finally, the particle weight is updated and the state estimation of the fusion center is obtained, using Joint Probability Data Association (JPDA) method. In this paper, some Monte Carlo simulations are used to analyze the performance of the new method. The simulation results show the MJPDAP can effectively track multitarget in the nonlinear systems, and be of much better performance than the single sensor Joint Probabilistic Data Association Particle (SJPDAP) algorithm.
引用
收藏
页码:306 / 309
页数:4
相关论文
共 50 条
  • [31] A Novel Nonlinear Multisensor Multitarget Tracking Algorithm
    Zhang Lin-lin
    Yang Ri-jie
    Guan Xu-jun
    ICWMMN 2010, PROCEEDINGS, 2010, : 277 - 281
  • [32] Dynamic sensor management for multisensor multitarget tracking
    Li, Y.
    Krakow, L. W.
    Chong, E. K. P.
    Groom, K. N.
    2006 40TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-4, 2006, : 1397 - 1402
  • [33] On MCMC-Based Particle Methods for Bayesian Filtering: Application to Multitarget Tracking
    Septier, Francois
    Pang, Sze Kim
    Carmi, Avishy
    Godsill, Simon
    2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2009, : 360 - 363
  • [34] A Gaussian mixture multiple-model belief propagation filter for multisensor-multitarget tracking
    Zheng, Feng
    Tian, Yu
    Zhan, Weicong
    Yu, Jiancheng
    Liu, Kaizhou
    SIGNAL PROCESSING, 2024, 220
  • [35] Multitarget tracking with the cubature Kalman particle probability hypothesis density filter
    Wang, Hai-Huan
    Wang, Jun
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2015, 37 (09): : 1960 - 1966
  • [36] An Efficient Data-Driven Particle PHD Filter for Multitarget Tracking
    Zheng, Yunmei
    Shi, Zhiguo
    Lu, Rongxing
    Hong, Shaohua
    Shen, Xuemin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (04) : 2318 - 2326
  • [37] MULTITARGET TRACKING USING GAUSSIAN PROCESS DYNAMICAL MODEL PARTICLE FILTER
    Wang, Jing
    Man, Hong
    Yin, Yafeng
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1580 - 1583
  • [38] Random set particle filter for bearings-only multitarget tracking
    Vihola, M
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XIV, 2005, 5809 : 301 - 312
  • [39] Bearings-only multitarget tracking based on rao-blackwellized particle CPHD filter
    Zhang J.
    Zhang, Jungen, 1600, North Atlantic University Union NAUN (14): : 1129 - 1136
  • [40] A Computationally Efficient Particle Filter for Multitarget Tracking Using an Independence Approximation
    Yi, Wei
    Morelande, Mark R.
    Kong, Lingjiang
    Yang, Jianyu
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (04) : 843 - 856