Optical tweezers: wideband microrheology

被引:62
|
作者
Preece, Daryl [1 ]
Warren, Rebecca [2 ]
Evans, R. M. L. [3 ]
Gibson, Graham M. [1 ]
Padgett, Miles J. [1 ]
Cooper, Jonathan M. [2 ]
Tassieri, Manlio [2 ]
机构
[1] Univ Glasgow, Dept Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Glasgow, Div Biomed Engn, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
[3] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
microrheology; optical tweezers; SLM; viscosity; polyacrylamide; viscoelasticity; optical micro-manipulation; PARTICLE; FORCE; TRAP; RHEOLOGY; POSITION;
D O I
10.1088/2040-8978/13/4/044022
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microrheology is a branch of rheology having the same principles as conventional bulk rheology, but working on micron length scales and microlitre volumes. Optical tweezers have been successfully used with Newtonian fluids for rheological purposes such as determining fluid viscosity. Conversely, when optical tweezers are used to measure the viscoelastic properties of complex fluids the results are either limited to the material's high-frequency response, discarding important information related to the low-frequency behaviour, or they are supplemented by low-frequency measurements performed with different techniques, often without presenting an overlapping region of clear agreement between the sets of results. We present a simple experimental procedure to perform microrheological measurements over the widest frequency range possible with optical tweezers. A generalized Langevin equation is used to relate the frequency-dependent moduli of the complex fluid to the time-dependent trajectory of a probe particle as it flips between two optical traps that alternately switch on and off.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Optical microrheology of biopolymers
    Parkin, S
    Knöner, G
    Nieminen, TA
    Heckenberg, NR
    Rubinsztein-Dunlop, H
    [J]. PHOTONICS: DESIGN, TECHNOLOGY, AND PACKAGING II, 2006, 6038
  • [42] Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry
    Addas, KM
    Schmidt, CF
    Tang, JX
    [J]. PHYSICAL REVIEW E, 2004, 70 (02):
  • [43] Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers
    Rich, Jason P.
    Lammerding, Jan
    McKinley, Gareth H.
    Doyle, Patrick S.
    [J]. SOFT MATTER, 2011, 7 (21) : 9933 - 9943
  • [44] OPTICAL TWEEZERS
    AMOS, B
    GILL, P
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 1995, 6 (02) : 248 - 248
  • [45] Optical tweezers
    [J]. Phys Educ, 3 (179):
  • [46] Fundamental limits of optical microrheology
    Helseth, LE
    Fischer, TM
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 275 (01) : 322 - 327
  • [47] OPTICAL TWEEZERS Imaging lets optical tweezers 'feel the force'
    Overton, Gail
    [J]. LASER FOCUS WORLD, 2009, 45 (08): : 17 - 18
  • [48] Microrheology With an Anisotropic Optical Trap
    Matheson, Andrew B.
    Mendonca, Tania
    Gibson, Graham M.
    Dalgarno, Paul A.
    Wright, Amanda J.
    Paterson, Lynn
    Tassieri, Manlio
    [J]. FRONTIERS IN PHYSICS, 2021, 9
  • [49] Two-point active microrheology in a viscous medium exploiting a motional resonance excited in dual-trap optical tweezers
    Paul, Shuvojit
    Kumar, Randhir
    Banerjee, Ayan
    [J]. PHYSICAL REVIEW E, 2018, 97 (04)
  • [50] Optical doughnut for optical tweezers
    Zhang, DW
    Yuan, XC
    [J]. OPTICS LETTERS, 2003, 28 (09) : 740 - 742