Optical tweezers: wideband microrheology

被引:62
|
作者
Preece, Daryl [1 ]
Warren, Rebecca [2 ]
Evans, R. M. L. [3 ]
Gibson, Graham M. [1 ]
Padgett, Miles J. [1 ]
Cooper, Jonathan M. [2 ]
Tassieri, Manlio [2 ]
机构
[1] Univ Glasgow, Dept Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Glasgow, Div Biomed Engn, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
[3] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
microrheology; optical tweezers; SLM; viscosity; polyacrylamide; viscoelasticity; optical micro-manipulation; PARTICLE; FORCE; TRAP; RHEOLOGY; POSITION;
D O I
10.1088/2040-8978/13/4/044022
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microrheology is a branch of rheology having the same principles as conventional bulk rheology, but working on micron length scales and microlitre volumes. Optical tweezers have been successfully used with Newtonian fluids for rheological purposes such as determining fluid viscosity. Conversely, when optical tweezers are used to measure the viscoelastic properties of complex fluids the results are either limited to the material's high-frequency response, discarding important information related to the low-frequency behaviour, or they are supplemented by low-frequency measurements performed with different techniques, often without presenting an overlapping region of clear agreement between the sets of results. We present a simple experimental procedure to perform microrheological measurements over the widest frequency range possible with optical tweezers. A generalized Langevin equation is used to relate the frequency-dependent moduli of the complex fluid to the time-dependent trajectory of a probe particle as it flips between two optical traps that alternately switch on and off.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Microrheology with optical tweezers
    Yao, Alison
    Tassieri, Manlio
    Padgett, Miles
    Cooper, Jonathan
    [J]. LAB ON A CHIP, 2009, 9 (17) : 2568 - 2575
  • [2] Microrheology with optical tweezers: peaks & troughs
    Tassieri, Manlio
    [J]. CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2019, 43 : 39 - 51
  • [3] Passive and active microrheology with optical tweezers
    Brau, R. R.
    Ferrer, J. M.
    Lee, H.
    Castro, C. E.
    Tam, B. K.
    Tarsa, P. B.
    Matsudaira, P.
    Boyce, M. C.
    Kamm, R. D.
    Lang, M. J.
    [J]. JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2007, 9 (08): : S103 - S112
  • [4] Microrheology with optical tweezers: data analysis
    Tassieri, Manlio
    Evans, R. M. L.
    Warren, Rebecca L.
    Bailey, Nicholas J.
    Cooper, Jonathan M.
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [5] Active Stochastic Microrheology using Optical Tweezers
    Lee, Hyungsuk
    Castro, Carlos E.
    Shin, Yongdae
    Kamm, Roger D.
    Lang, Matthew J.
    [J]. BIOPHYSICAL JOURNAL, 2010, 98 (03) : 592A - 592A
  • [6] Single-shot wideband active microrheology using multiple-sinusoid modulated optical tweezers
    Kundu, Avijit
    Dey, Raunak
    Paul, Shuvojit
    Banerjee, Ayan
    [J]. PHYSICAL REVIEW FLUIDS, 2021, 6 (12):
  • [7] Microrheology of concentrated DNA solutions using optical tweezers
    Rajkumar, Arun S.
    Ali, B. M. Jaffar
    [J]. BULLETIN OF MATERIALS SCIENCE, 2008, 31 (03) : 381 - 386
  • [8] Vaterite Twist Microrheology with AOM Controlled Optical Tweezers
    Funk, Maren
    Parkin, Simon J.
    Nieminen, Timo A.
    Heckenberg, Norman R.
    Rubinsztein-Dunlop, Halina
    [J]. COMPLEX LIGHT AND OPTICAL FORCES III, 2009, 7227
  • [9] Linear microrheology with optical tweezers of living cells 'is not an option'!
    Tassieri, Manlio
    [J]. SOFT MATTER, 2015, 11 (29) : 5792 - 5798
  • [10] Microrheology of microlitre samples: Probed with rotating optical tweezers
    Parkin, Simon J. W.
    Knoener, Gregor
    Nieminen, Timo A.
    Heckenberg, Norman R.
    Rubinsztein-Dunlop, Halina
    [J]. OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION IV, 2007, 6644